
AFRL-AFOSR-VA-TR-2015-0297

PROTECTION OF MISSION-CRITICAL APPLICATIONS FROM UNTRUSTED EXECUTION ENVIRONMENT

Kang Shin
UNIVERSITY OF MICHIGAN

Final Report
09/28/2015

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA2
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

09/15/2015
2. REPORT TYPE

Final Performance Report
3. DATES COVERED (From - To)

7/15/2010 - 7/14/2015
4. TITLE AND SUBTITLE
Title: Protection of Mission-Critical Applications from Untrusted Execution
Environments

Subtitle: Resource-Efficient Replication and Migration of Virtual Machines

5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-10-1-0393
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Kang G. Shin

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REGENTS OF THE UNIVERSITY OF MICHIGAN
OFFICE OF RESEARCH AND SPONSORED PROJECTS
503 THOMPSON ST
Ann Arbor MI, 48109

8. PERFORMING ORGANIZATION

REPORT NUMBER
09-PAF02865

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
USAF, AFRL DUNS 143574726
AF OFFICE OF SCIENTIFIC RESEARCH
875 NORTH RANDOLPH STREET, RM 3112
ARLINGTON VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)
USAF, AFRL

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

FA9550-10-1-0393
12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution A - Approved for Public Release

13. SUPPLEMENTARY NOTES

None

14. ABSTRACT
Continuous replication and live migration of Virtual Machines (VMs) are two vital tools in a virtualized environment, but they
are resource-expensive. Continuously replicating a VM's checkpointed state to a backup host maintains high-availability
(HA) of the VM despite host failures, but checkpoint replication can generate significant network traffic. This report
describes how to replicate VMs for HA using resources efficiently, and to migrate VMs fast, with minimal execution
disruption and using resources efficiently.

15. SUBJECT TERMS

High-availability virtual machines, live migration, memory and traffic overheads, application suspension, Java applications

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER

OF

PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18 DISTRIBUTION A: Distribution approved for public release.

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year
and be Year 2000 compliant, e.g. 30-06-1998;
xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's
thesis, progress, quarterly, research, special, group
study, etc.

3. DATE COVERED. Indicate the time during
which the work was performed and the report was
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996;
May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume
number and part number, if applicable. On classified
documents, enter the title classification in
parentheses.

5a. CONTRACT NUMBER. Enter all contract
numbers as they appear in the report, e.g.
F33315-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report. e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the
report, e.g. 61101A.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report.
The form of entry is the last name, first name, middle
initial, and additional qualifiers separated by commas,
e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND

ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.

Enter all unique alphanumeric report numbers assigned
by the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)

AND ADDRESS(ES). Enter the name and address of
the organization(s) financially responsible for and
monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).

Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT.
Use agency-mandated availability statements to indicate
the public availability or distribution limitations of the
report. If additional limitations/ restrictions or special
markings are indicated, follow agency authorization
procedures, e.g. RD/FRD, PROPIN,
ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information
not included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition
number, etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases
identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the
top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the
abstract. Enter UU (Unclassified Unlimited) or SAR
(Same as Report). An entry in this block is necessary if
the abstract is to be limited.

Standard Form 298 Back (Rev. 8/98)

DISTRIBUTION A: Distribution approved for public release.

Resource-Efficient Replication and Migration of

Virtual Machines

by

Kang G. Shin

This research was supported in part by the US Air Force Office of Scientific Research under

Grant No. FA9550-10-1-0393. This report is the thesis prepared by Kai-Yuan Hou to partially fulfill

the requirements for the degree of Doctor of Philosophy in the University of Michigan.

DISTRIBUTION A: Distribution approved for public release.

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . viii

ABSTRACT . ix

CHAPTER

I. Introduction . 1

1.1 VM Replication for High-Availability . 2

1.2 VM Live Migration . 3

1.3 Thesis Overview . 3

1.4 Thesis Organization . 4

II. Tradeoffs in Compressing Virtual Machine Checkpoints in

High-Availability Systems . 6

2.1 Introduction . 6

2.2 Checkpoint Replication . 7

2.2.1 Preliminaries . 7

2.2.2 Need for Checkpoint Compression 8

2.3 Evaluation Methodology . 9

2.3.1 Framework . 9

2.3.2 Metrics . 9

2.4 Checkpoint Compression . 10

2.4.1 Existing Techniques . 10

2.4.2 Exploiting VM Similarity . 11

2.5 Experimental Results . 12

2.5.1 Workloads and Testbed . 12

2.5.2 Traffic Reduction . 13

2.5.3 CPU and Memory Costs . 17

2.5.4 Checkpoint Transfer and Storage Time 19

2.6 Discussions on Compression Method Selections 23

2.7 Related Work . 24

2.8 Conclusions . 25

ii
DISTRIBUTION A: Distribution approved for public release.

III. HydraVM: Memory-Efficient High-Availability for

Virtual Machines . 26

3.1 Introduction . 26

3.2 HydraVM Design . 27

3.2.1 Storage-based VM High-Availability 27

3.2.2 An Overview of HydraVM . 28

3.2.3 Advantages and Limitations 29

3.3 VM Protection . 30

3.3.1 Checkpointing VM CPU and Memory State 30

3.3.2 Checkpointing VM Disk State 32

3.4 VM Recovery . 32

3.4.1 Slim VM Restore . 32

3.4.2 Fetching VM Pages On-demand 33

3.4.3 Pre-fetching Nearby VM Pages 34

3.5 Evaluation . 34

3.5.1 Testbed and Workloads . 34

3.5.2 Storage-based VM Protection 36

3.5.3 Overheads of VM Protection 36

3.5.4 Restoration of a Failed VM . 38

3.5.5 Operation of a Restored VM 39

3.6 Discussions on Alternative Storage Architectures 41

3.7 Related Work . 43

3.8 Conclusions . 44

IV. Application-Assisted Live Migration of Virtual Machines

with Java Applications . 45

4.1 Introduction . 45

4.2 Related Work . 47

4.3 Application-Assisted Live Migration . 48

4.3.1 What Memory to Skip Migrating? 48

4.3.2 Challenges and Design Principles 48

4.3.3 A Generic Framework . 49

4.4 JAVMM: Java-Aware VM Migration . 53

4.4.1 Background on Java Heap Management 53

4.4.2 Garbage in Java Heap . 53

4.4.3 JAVMM . 54

4.5 Evaluation . 57

4.5.1 Experimental Setup . 57

4.5.2 Progress of Migration . 57

4.5.3 Performance of Migration . 58

4.5.4 Impact of Young Generation Size 61

4.6 Discussions on Applications and Extensions 62

4.7 Conclusions . 62

V. Conclusions . 64

iii
DISTRIBUTION A: Distribution approved for public release.

5.1 Thesis Contributions . 64

5.2 Future Directions . 64

BIBLIOGRAPHY . 66

iv
DISTRIBUTION A: Distribution approved for public release.

LIST OF FIGURES

Figure

2.1 The bandwidth requirements and total traffic of checkpoint replication during two

minutes of workload execution. 8

2.2 The traffic reductions achieved for a single protected VM running different work-

loads. The ”sim-*” lines show the traffic reductions achieved by similarity com-

pression using different chunk sizes and a single-interval hash table, and the ”sim2-

*” lines show those achieved using a two-interval hash table. 14

2.3 The traffic reductions achieved by similarity compression for a HPC-C VM when

the VM’s checkpoints are processed alone (Single-VM), together with other VMs’

checkpoints in a 4-VM HPC cluster (4-VM), and using a two-interval hash table

(4-VM, 2-intv.) . 16

2.4 The CPU cost of checkpoint replication for a single protected VM running dif-

ferent workloads. No compression is used in the baseline. Delta cache is 32MB.

Similarity compression uses 256 byte chunks with a single-interval (Sim) and a

two-interval (Sim2) hash table. 18

2.5 The memory cost of similarity compression using 256 byte chunks. 19

2.6 The checkpoint transfer time of a single protected VM running different workloads. 20

2.7 The ratio of the measured transfer time in Figure 2.6 to the configured checkpoint-

ing interval. 21

2.8 The storage time of each checkpoint of a single protected VM running different

workloads. 22

2.9 The checkpoint transfer time of a HPC-C VM measured in our 4-VM HPC cluster

and workload mixture scenarios. 22

2.10 The breakdown of the checkpoint transfer times of a HPC-C VM measured in our

HPC clusters consisting of 1, 2 and 4 VMs. 23

3.1 The HydraVM system. 30

v
DISTRIBUTION A: Distribution approved for public release.

3.2 The VM pause time incurred for taking an incremental checkpoint. The legend is

given in (configured checkpointing interval, fail-over image storage type). 37

3.3 The performance of the workloads when checkpointed periodically. The runtime

of HPC-C without checkpointing (baseline) is 344 seconds. The baseline through-

put of FFT is 6.1 ops/min. The baseline runtime of FFmpeg is 289.5 seconds. . . 37

3.4 The time required to bring up a failed VM from a HDD- and a SSD-based fail-over

image storage. 38

3.5 The performance of the workloads under different conditions: no protection and

not checkpointed, protected and configured to be checkpointed every second, and

restored from a failure that occurs halfway through the workload executions. . . . 39

3.6 Number of VM pages fetched to execute the last 50% of the workloads in a re-

stored VM. 40

3.7 The storage I/Os incurred to demand fetch VM pages for FFmpeg after it resumes

execution in a restored VM. Each dot represents an I/O, and the size of the dot

represents the size of the I/O. 41

4.1 Live migration of a 2GB Xen VM running the Apache Derby database workload

from SPECjvm2008. 46

4.2 A generic framework for application-assisted live migration. 49

4.3 An example of transfer bitmap updates. 50

4.4 The workflow of application-assisted live migration. 52

4.5 Java heap usage and GC behavior of sample workloads from SPECjvm2008 run-

ning in a 2GB VM; see Table 4.1 for workload descriptions. The Young generation

of the Java heap is allowed to use at most 1GB memory. 54

4.6 An overview of JAVMM, which is built on our framework for application-assisted

live migration. This is a zoom-in view of Figure 4.2 with JVM/Java application

being the running application. 55

4.7 The workflow of JAVMM, with details of JVM’s and our TI agent’s actions to

fulfill the requirements of an application assisting in migration shown in Figure 4.4. 56

4.8 Progress of migrating a VM running the compiler workload from SPECjvm2008.

Each box represents a migration iteration; the width shows the duration and the

area shows the amount of traffic sent. In (b), the second last iteration of JAVMM

generates little network traffic while waiting for the workload to execute to a Safe-

point (0.7 sec) and a minor GC to be done (0.1 sec). 57

vi
DISTRIBUTION A: Distribution approved for public release.

4.9 Amount of memory processed when migrating a VM running the compiler work-

load from SPECjvm2008. In (b), the 4–10th iterations of JAVMM each process

less than 2MB of dirty memory. 58

4.10 Performance of JAVMM and Xen live migration for workloads with different char-

acteristics of Java heap usage. 59

4.11 Effect of VM migration on the throughput of running application, i.e., the number

of operations completed per second. Migration begins after the application runs

for 300 seconds. 60

4.12 Performance of JAVMM and Xen live migration for Category 1 workloads with

different size Young generations. 61

vii
DISTRIBUTION A: Distribution approved for public release.

LIST OF TABLES

Table

2.1 The workloads used in our evaluation and their setup. 12

2.2 The average checkpoint sizes of each workload. 13

3.1 The size of the incremental checkpoints taken and the time required to send and

store each checkpoint to the fail-over image storage during the execution of the

workloads. 35

3.2 Amount of data loaded and the loading time incurred during fail-over (slim VM

restore). 38

4.1 Description of the SPECjvm2008 workloads used in our experiments. 53

4.2 Workloads with different characteristics of Java heap usage and their experimental

settings. 59

4.3 Workloads with high object allocation rates and their experimental settings. . . . 61

viii
DISTRIBUTION A: Distribution approved for public release.

ABSTRACT

Resource-Efficient Replication and Migration of Virtual Machines

Continuous replication and live migration of Virtual Machines (VMs) are two vital tools in a virtual-

ized environment, but they are resource-expensive. Continuously replicating a VM’s checkpointed

state to a backup host maintains high-availability (HA) of the VM despite host failures, but check-

point replication can generate significant network traffic. Each replicated VM also incurs a 100%

memory overhead, since the backup unproductively reserves the same amount of memory to hold

the redundant VM state. Live migration, though being widely used for achieving load-balancing,

power-saving, etc., can also generate excessive network traffic, by transferring VM state iteratively.

In addition, it can incur a long completion time and degrade application performance.

This thesis explores ways to replicate VMs for HA using resources efficiently, and to migrate

VMs fast, with minimal execution disruption and using resources efficiently. First, we investigate

the tradeoffs in using different compression methods to reduce the network traffic of checkpoint

replication in a HA system. We evaluate gzip, delta and similarity compressions based on metrics

that are specifically important in a HA system, and then suggest guidelines for their selections.

Next, we propose HydraVM, a storage-based HA approach that eliminates the unproductive

memory reservation made in backup hosts. HydraVM maintains a recent image of a protected VM

in a shared storage by taking and consolidating incremental VM checkpoints. When a failure occurs,

HydraVM quickly resumes the execution of a failed VM by loading a small amount of critical VM

state from the storage. As the VM executes, the VM state not yet loaded is supplied on-demand.

Finally, we propose application-assisted live migration, which skips transfer of VM memory

that need not be migrated to execute running applications at the destination. We develop a generic

framework for the proposed approach, and then use the framework to build JAVMM, a system that

migrates VMs running Java applications skipping transfer of garbage in Java memory. Our results

show that compared to Xen live migration, which is agnostic of running applications, JAVMM can

reduce the completion time, network traffic and application downtime caused by Java VM migration,

all by up to over 90%.

ix
DISTRIBUTION A: Distribution approved for public release.

CHAPTER I

Introduction

Virtualization is used to create one or more Virtual Machines (VMs) that act like real machines

in a physical host. It facilitates flexible partitioning and dynamic allocation of computing resources,

and is widely used in computing environments of various kinds and scales.

In a virtualized environment, applications run in VMs, and multiple VMs may be consolidated

in a single physical server. Server consolidation has in fact been the most common reason for

using virtualization [66]. It is most useful when applications require certain level of isolation,

e.g., isolation of configurations, performances, faults, and so on, yet each of them do not need the

full capacity of a single server. Running these applications in separate VMs on a single physical

server enhances server utilization and reduces various operational costs, including management

cost, power, space, etc.

However, server consolidation exacerbates the consequence of unexpected host failures. When

VMs are consolidated, failure of a single host may bring down multiple VMs on the host and

all applications running thereon, resulting in an unacceptable aggregate loss. As host failures are

inevitable, even common in large environments [29, 94], maintaining highly available VMs despite

the occurrences of host failure has become a crucial task. To achieve this, various approaches have

been proposed to replicate VMs between hosts continuously throughout VMs’ execution [20, 24,

32, 39, 44, 47, 93], but they incur high resource costs, creating a tension between high-availability

and resource-efficiency, both are critical operational goals of a virtualized environment.

On the other hand, server consolidation increases the need for VM live migration, which is

the ability to move a running VM from a physical host to another without disrupting the VM’s

execution. As co-located VMs’ workload dynamics and resource demands change, live migration

can be used to adjust placement of the VMs at runtime, to mitigate resource hotspots [98] or enhance

VM performance [31]. It can also be used to achieve power savings [30, 40, 72]. While live

migration has been implemented by many virtualization platforms [9, 11, 38, 73], it can perform

poorly when the underlying network is a bottleneck; it not only incurs a high resource cost, but also

takes a long time to complete and degrades running applications’ performance.

The needs to achieve VM high-availability (HA) at reduced resource costs and to perform VM

live migration efficiently despite a network bottleneck are the two main motivations behind this the-

sis. Recognizing these needs, this thesis explores ways to (1) replicate VMs for HA using resources

efficiently; (2) migrate VMs fast, with minimal disruption to VM execution and using resources

efficiently. Below, we discuss the motivations of the thesis in more detail, and then provide an

overview of the thesis.

1
DISTRIBUTION A: Distribution approved for public release.

1.1 VM Replication for High-Availability

The simplest way to maintain highly available VMs despite the occurrences of physical host

failure is to reboot the VMs brought down by a host failure in other healthy hosts automatically

upon detection of the failure [21]. This approach is “stateless”, since the restarted VM loses its

runtime state before the failure.

To be able to resume a failed VM’s execution from where it left off in the failure, various

“stateful” HA approaches have been proposed. They create a backup VM in a separate host for each

primary running VM, and synchronize a primary VM’s runtime state to its backup in one of the

following two ways: log-and-replay [20, 32] and checkpoint replication [24, 39, 44, 47, 93]. The

backup VM stands by in the background until a failure of the primary VM occurs, at which point it

becomes active and takes over execution from the primary’s state before the failure.

During normal operation of the primary, the aforementioned primary-backup synchronization

approaches work as follows. Log-and-replay records the low-level events executed by the primary

VM, e.g., instructions and interrupts, and replays them deterministically in the backup VM, to bring

the backup to the same state as the primary. Checkpoint replication sends the primary’s state to

the backup directly and continuously, by sending a series of primary VM checkpoints. In the two

approaches, checkpoint replication is more widely applicable to different hardware/software config-

urations in a virtualized environment; the performance of log-and-replay can degrade significantly

for VMs configured with multiple virtual CPUs, since the shared memory communication between

CPUs must be accurately tracked and replayed [45, 88].

By maintaining backup VMs, stateful HA approaches minimize the loss of VMs’ completed

work caused by failures, but at high resource costs. Though approaches based on checkpoint repli-

cation have a wide applicability, they can impose a heavy load on network resources, especially

when frequent checkpointing is used to checkpoint the network packets of client-facing applica-

tions before sending the packets out. For example, replicating checkpoints for a single protected

VM once every 25 ms can consume more than 3 Gb/s of network bandwidth. When multiple VMs

are protected at the same time, even dedicated GbE links cannot provide the aggregate bandwidth

required for checkpoint replication. With such prohibitive network requirements, replicating VM

checkpoints for HA could potentially use up all available network resources, interfere with normal

VM traffic, and degrade application performances. The network traffic of checkpoint replication

needs to be reduced for real-world deployment of this technique, and this should be done taking

into consideration any impact on protected VMs’ HA properties and performances.

On the other hand, whether based on checkpoint replication or log-and-replay, existing HA ap-

proaches use in-memory backups. The backup VM sits in the memory of a dedicated backup host,

and reserves as much memory as its primary; the reserved memory space cannot be utilized by other

running VMs. Therefore, using existing approaches, each VM pays a 100% memory overhead to

achieve HA. The backup memory reservation is unproductive, since the backup VM does not con-

tribute to workload execution and system throughput until the primary fails. The aggregate backup

memory reservation made for a group of protected VMs can significantly and unproductively con-

sume RAM, a rather expensive computing resource. Furthermore, inactively blocking host memory

for backup VMs may hinder effective consolidation of active running VMs, and result in under-

utilization of other host resources (e.g., CPU cores). An alternative HA approach using memory

efficiently is thus needed, to reduce the overall memory requirement for supporting HA.

2
DISTRIBUTION A: Distribution approved for public release.

1.2 VM Live Migration

VM migration was first proposed to support user mobility [37], and the early migration systems

move a VM while the VM is suspended (i.e., not executing) [61, 87]. Later, VM live migration was

proposed to move a VM while the VM is (mostly) executing [38, 73]. Live migration has different

usages than the early migration systems. It is intended to relocate VMs at runtime, and has primarily

been used for achieving load-balancing, performance enhancements, and so on. This thesis focuses

on live migration of VMs.

Various contemporary virtualization technologies support live migration, and most of them use

a pre-copy approach [9, 11, 38, 73]. A pre-copy approach copies all the state of a VM to be migrated

to the destination host before the VM starts to execute in the destination host. This is contrary to

a post-copy approach [50], which copies a migrated VM’s state from the source host after the VM

starts execution in the destination. Pre-copy is more widely used mainly for reliability reasons.

Should the destination host fail in the middle of migration of a VM, a pre-copy approach aborts the

migration, and the VM remains running in the source host. In a post-copy approach, a failure of the

destination host may lead to a complete failure of the VM, since the VM has begun executing in the

destination and its state in the source host is only partially valid.

A pre-copy approach works as follows. To migrate a VM with minimal disruption to its exe-

cution, while the VM continues to run in the source host, its memory pages are transferred to the

destination host incrementally and iteratively. In the first iteration, all of the memory pages are sent;

at each following iteration, only the pages dirtied during the previous iteration are sent. Ideally,

dirty pages should be transferred faster than new pages get dirtied. As the iterations progress, the

number of dirty pages pending transmission should decrease. In the last iteration, the VM is paused,

but only for a short time, since only a small number of dirty pages remain to be sent. After this short

pause, the VM resumes execution in the destination, and migration of the VM completes.

However, this ideal migration is not always achieved, since the underlying network can be a

bottleneck. Under this condition, VM memory pages are dirtied faster than they can be transferred

to the destination, and the number of dirty pages pending transmission cannot be reduced iteratively.

This can result in sending a large number of dirty pages in each iteration, and the iterations can

remain long until the last one, during which the VM is paused. Consequently, the migration can

take a long time to complete, create significant network traffic and cause a noticeable VM downtime,

which leads to degradation of running applications’ performance. For example, we have observed

live migration of a 2GB database VM over a gigabit Ethernet to last for more than one minute,

generate 7GB (over 3x the VM size) of network traffic, cause 8 seconds of VM downtime and

degrade the database application’s performance by more than 20%. It is crucial to enhance live

migration to overcome the network bottlenecking problem, but previous enhancements (e.g., [38,

50, 54, 92]), mostly treating migrating VMs as black boxes, incur either high resource costs or

application performance penalties.

1.3 Thesis Overview

The following statement summarizes this thesis:

VMs need to be replicated for high-availability (HA) against host failures at reduced resource

costs, and migrated with minimal execution disruption even when network is a bottleneck. Ap-

proaches to reducing the network traffic of VM checkpoint replication in a HA system should be

applied adaptively based on workload scenarios, and a memory-efficient HA alternative is feasible.

Assistance from applications running in migrating VMs is useful for efficient VM live migration

despite a network bottleneck.

3
DISTRIBUTION A: Distribution approved for public release.

This thesis consists of three parts to demonstrate the above.

The first part of the thesis focuses on reducing the network traffic of VM checkpoint replication

in a HA system. Checkpoint compression has been suggested to meet this purpose. While com-

pression methods are available, they have not been compared systematically when applied to VM

checkpoints in the context of supporting HA. Therefore, we build a generic framework to evaluate

compression methods based on metrics that are specifically relevant and important in a HA system.

The primary objective of our evaluation is to quantify the tradeoffs between the effectiveness and

overheads of different compression methods, and provide insights that could guide their selections.

Using our evaluation framework, we evaluate and compare three compression methods: two existing

approaches, gzip and delta compression, and a method we explore, called similarity compression;

similarity compression applies redundancy elimination to VM checkpoints continuously at fine time

granularities to reduce checkpoint traffic. Our evaluation shows that one can hardly find a single

best compression solution to reducing checkpoint traffic. Based on the experimental results, we

provide guidelines for applying the different compression methods according to the workload types

and resource constraints in a HA system.

The second part of this thesis proposes a memory-efficient HA approach for VMs, called Hy-

draVM, to reduce the cost of making backup memory reservation for VM protection. The primary

objective of HydraVM is to provide stateful protection for VMs against failures of their hosting ma-

chines without any backup memory reservation. Instead of maintaining a backup VM in a separate

server, HydraVM keeps track of the runtime state of a protected VM in a fail-over image main-

tained in a networked, shared storage, which is commonly deployed in a virtualized environment to

hold VM disks and facilitate VM management. Upon detection of a failure, HydraVM performs a

slim VM restore, which loads only a small amount of critical VM state from the fail-over image to

quickly bring a failed VM back alive. As the VM resumes execution, the VM state not yet loaded

is supplied on-demand. Our experimental results show that HydraVM provides VM protection at

a low overhead, and can recover a failed VM within 2.2 seconds. This memory-efficient, storage-

based approach complements the HA toolbox currently available to system administrators with a

cost-effective alternative.

Finally, this thesis proposes application-assisted live migration. We take a white-box approach

to efficient VM live migration. Our approach leverages assistance from applications running in a

migrating VM, and skips transfer of the VM’s memory pages that need not be migrated for the

applications to execute in the destination host. It reduces the amount of memory transfer during

live migration, with the objective of migrating the VM fast, with minimal disruption to VM exe-

cution and using resources efficiently. We build a generic framework for application-assisted live

migration, and then use the framework to build JAVMM, a system that migrates VMs running Java

applications skipping transfer of garbage in Java memory. In JAVMM, Java Virtual Machine (JVM),

the application-level VM that executes Java bytecode, is enabled to provide all the assistance needed

for migration on behalf of Java applications; no modifications to Java applications are required. Our

experimental results show that compared to Xen live migration, which is agnostic of applications

running in migrating VMs, JAVMM can migrate a Java VM with up to more than 90% shorter

completion time, less network traffic and shorter application downtime.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter II describes the framework we build for evaluating checkpoint compression methods,

and discusses the experimental results of evaluating and comparing gzip, delta and similarity com-

4
DISTRIBUTION A: Distribution approved for public release.

pressions using our framework, as well as the insights gained from the evaluation.

Chapter III presents HydraVM, a memory-efficient, storage-based HA approach for VMs. We

discuss the rationale, advantages and limitations of a storage-based HA approach, and describe the

design, implementation and evaluation of HydraVM.

Chapter IV describes application-assisted live migration. We first present a generic framework

for VM live migration to use applications’ assistance, and then describe the design, implementa-

tion and evaluation of JAVMM, built based on the framework to migrate Java VMs using JVM’s

assistance.

Chapter V summarizes the contributions and future directions of this thesis.

5
DISTRIBUTION A: Distribution approved for public release.

CHAPTER II

Tradeoffs in Compressing Virtual Machine Checkpoints in

High-Availability Systems

2.1 Introduction

Continuous checkpoint replication is a prevalent approach to maintaining highly available VMs

even in the case of host failures [24, 39, 44, 47, 93]. It periodically captures the state of a VM

in checkpoints, and replicates the checkpoints to a backup host. If the physical host of the VM

fails, the VM can be restored from the most recent checkpoint available in the backup. However,

checkpoint replication protects VMs at the expense of significant network traffic. Large amounts of

checkpoint data are transported over the network, especially when frequent checkpointing is used by

client-facing, latency-sensitive applications to checkpoint network packets before sending them out.

Reducing checkpoint replication traffic is crucial to using this technique in real-world HA systems.

One way of reducing checkpoint traffic is to “compress” checkpoints before sending them over

the network. Checkpoint compression requires no modifications to a VM, and can be applied re-

gardless of the applications running in the VM. It can be done by a general-purpose tool, such

as gzip [5]. Alternatively, for each dirty memory page in a checkpoint, the bits that are actually

changed (called the page delta) may be identified, and the delta is replicated instead of the full

page [69, 80, 92, 97]. These compression methods are available, but they have not been evaluated

comparatively and systematically when applied to VM checkpoints in the context of supporting

HA. There are few guidelines for selecting and using them under different workloads and operating

conditions in a HA system.

The primary goal of this chapter is to quantify the tradeoffs between the effectiveness and over-

heads of various checkpoint compression methods, and provide insights that could guide their selec-

tion decisions. We compare three compression methods, including gzip, delta compression, and a

method we explore, called similarity compression. Similarity compression finds and eliminates du-

plicate contents in VM checkpoints to reduce checkpoint traffic, exploiting the content redundancy

in VM memory. Different from existing memory deduplication systems, which coalesce identical

pages of co-located VMs and reduce host memory pressure [49, 58, 70, 96], similarity compression

finds redundant contents in the changed set of VM pages, i.e., the VM checkpoints, and much more

frequently.

We evaluate the three compression methods using workloads chosen from types frequently seen

in HA systems, including server workloads that constantly interact with external clients and long-

running computation jobs. Our results show that one can hardly find a single best compression

solution. gzip reduces checkpoint traffic substantially, but at a prohibitive CPU cost. It takes a long

time to replicate and store each checkpoint when gzip is used, and this limits the applicability of gzip

for interactive, latency-sensitive applications needing frequent checkpointing. Delta compression

6
DISTRIBUTION A: Distribution approved for public release.

incurs a low CPU overhead and short checkpoint transfer times, but requires a cache larger than the

average checkpoint size of a protected VM to achieve a reasonable traffic reduction. For workloads

that touch large areas of memory rapidly, delta compression can consume hundreds of MBs of RAM

for the cache.

Similarity compression eliminates redundant contents within checkpoints of the same VM (intra-

VM similarity), and between checkpoints of different VMs on a host (inter-VM similarity). It is

particularly effective for VM clusters running homogeneous workloads, such as High Performance

Computing (HPC) clusters. Our results show that a non-trivial amount of VM similarity exists in

these environments, especially when VMs collaborate on a shared task set. However, in heteroge-

neous workload scenarios, limited VM similarity is found, so gzip and delta compression are better

suited. Although similarity compression is suited for a smaller range of application scenarios com-

pared to the other two methods, for suitable scenarios, it reduces checkpoint traffic effectively using

both CPU and memory efficiently, and requires short checkpoint transfer time and storage time.

The contribution of this chapter is threefold. First, it explores similarity compression, and pro-

poses its use in homogeneous workload scenarios. Similarity compression is a new application of

the existing concept of redundancy elimination; it applies redundancy elimination to changed VM

memory continuously at fine time granularities, and our evaluation quantifies the effectiveness of

redundancy elimination in this specific case. Second, to our best knowledge, this chapter presents

the first detailed evaluation and characterization of checkpoint compression methods in the context

of supporting HA, considering gzip, delta and similarity compressions. Third, based on the evalua-

tion results, this chapter suggests guidelines for selecting and using these compression methods for

different workload types and resource constraints in a HA system.

The remainder of the chapter is organized as follows. Section 2.2 provides background on

checkpoint replication. We describe our evaluation framework in Section 2.3 and the three com-

pression methods evaluated in Section 2.4. Section 2.5 presents and analyzes our experimental

results. We discuss the insights gained from our evaluation in Section 2.6. Section 2.7 describes

related work, and the chapter concludes with Section 2.8.

2.2 Checkpoint Replication

2.2.1 Preliminaries

Checkpoint replication protects a VM from the failure of its physical host by sending check-

points of the VM to a backup host continuously [24, 39, 44, 47, 93]; the backup host is chosen so

that it is isolated from the failure of the protected host. When protection begins, a full checkpoint

containing every memory page and the CPU state of the protected VM is replicated to the backup.

It is stored in the backup’s RAM, and becomes the fail-over image of the protected VM.1

As the VM executes, incremental checkpoints are taken and replicated to the backup, usually

at fixed time intervals (a pre-configured checkpointing frequency). An (incremental) checkpoint

mainly consists of the VM pages dirtied during the last checkpointing interval. After all dirty

pages in a checkpoint are replicated to the backup, their contents are stored in proper locations

in the fail-over image according to the page indexes. The fail-over image is not updated as each

dirty page is received, or it may become inconsistent and unusable for recovery if the protected

host fails in the middle of sending a checkpoint. If a checkpoint takes longer than the configured

checkpointing interval to replicate, the subsequent checkpoint is not taken when the next interval

1VM disks are usually hosted in a shared storage accessible to all VM hosts. A VM disk state consistent with the

VM’s memory and CPU state in the fail-over image may be maintained by the storage system using copy-on-write

techniques [12, 67, 84, 85].

7
DISTRIBUTION A: Distribution approved for public release.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

25 50 100 1000 2000 5000
 0

 20

 40

 60

 80

 100

N
et

w
or

k
Ba

nd
w

id
th

 (M
b/

s)

To
ta

l T
ra

ffi
c

(G
B)

Checkpointing Interval (ms)

1vm-ffmpeg
1vm-voltdb
4vm-mixed

Figure 2.1: The bandwidth requirements and total traffic of checkpoint replication during two min-

utes of workload execution.

begins, but delayed until the on-going replication finishes. This way, checkpoints are not sent faster

than they can be stored and made useful in the fail-over image.

Once a failure of the VM host is detected, the HA system initiates a fail-over. The failed VM is

restored based on its fail-over image (in the backup’s RAM) and a consistent disk state (in a shared

storage), and resumes operation from the most recent checkpointed state in the backup host. In

order to make this fail-over transparent to the VM’s external clients, the HA system ensures that

the clients never see “unprotected” VM state, i.e., the state not yet backed up. Specifically, during

normal operation of the VM, outgoing network packets are withheld until the checkpoint capturing

the state from which the packets are generated is fully replicated to the backup. Therefore, HA

systems commonly use checkpointing intervals of tens of milliseconds or even shorter, in order to

checkpoint and release network packets very frequently and achieve reasonable performance for

client-facing applications.

2.2.2 Need for Checkpoint Compression

We ran different workloads in VMs, and replicated VM checkpoints for two minutes of work-

load executions. Figure 2.1 shows the network bandwidth required and total traffic generated by

checkpoint replication (see Table 2.1 for workload details). When checkpoints are replicated every

25 ms, protection of a media transcoding (ffmpeg) server and a database (voltdb) server uses more

than 1700 Mb/s and 3000 Mb/s of network bandwidth, respectively. Even a dedicated GbE link can-

not meet these requirements for protecting a single VM. When 4 VMs are protected concurrently,

replicating checkpoints every 25 ms creates almost 100 GB of traffic in the network in only two

minutes. To replicate these checkpoints at the configured checkpointing intervals, over 6500 Mb/s

of network bandwidth is required. Even if a 10GbE link is available, it will soon become saturated

with just a few more VMs to protect.

One may consider installing faster networks to meet the bandwidth requirement of checkpoint

replication. However, higher-bandwidth links are expensive, and it is not always feasible to upgrade

networks in existing infrastructures. Furthermore, as more and more VMs need protection, check-

point replication traffic may eventually use up all available network resources and interfere with

normal VM traffic, degrading application performance and users’ experience with VMs. Therefore,

reducing checkpoint traffic when providing VM protection is a must. This chapter conducts a sys-

tematic evaluation and comparison of three compression methods for reducing checkpoint traffic,

and provides guidelines for their selections in a HA system. Next, we describe how each compres-

sion method is evaluated.

8
DISTRIBUTION A: Distribution approved for public release.

2.3 Evaluation Methodology

2.3.1 Framework

To facilitate systematic comparison of multiple compression methods, we took an emulation ap-

proach for our evaluation. We built a framework consisting of a checkpoint sender (emulhacp) and

a checkpoint receiver (emulharcv), which emulate the replication and storage of VM checkpoints

in a HA system, as described in Section 2.2.1. emulhacp and emulharcv use multiple concur-

rent threads to emulate concurrent protection of multiple VMs. Different compression methods are

implemented as modules inserted into the framework for evaluation.

To use this framework, we capture VM checkpoints a priori in a real HA system [52], and store

them as individual files. emulhacp runs in a protected host. It reads a complete checkpoint from a

file into a memory buffer, and from then operates on the buffer. It processes each dirty page using

the compression method to be evaluated, and then sends the page to emulharcv, which runs in the

backup. Once all dirty pages are received, emulharcv sends an ACK to emulhacp, and begins to

decompress each page and store the page content to the fail-over image kept in RAM.

After emulhacp receives the ACK, it waits until the current checkpointing interval ends, and

replicates a new checkpoint when the next interval begins. If an ACK is not received by the be-

ginning of the next interval, emulhacp waits for the current checkpoint to be fully replicated, and

immediately after an ACK is received, it sends a new checkpoint. In this case, emulharcv is re-

ceiving a new checkpoint while decompressing and storing the one just received at the same time.

We use double buffering in the backup: emulharcv uses at most two checkpoint buffers at

the same time for each VM. If, by the time emulharcv receives the new incoming checkpoint

in entirety, the previous checkpoint is not yet fully decompressed and incorporated into the fail-

over image, the VM may not replicate more checkpoints. Checkpoint replication is resumed when

the previous checkpoint is completely stored and its buffer released to receive another incoming

checkpoint. Double buffering keeps any VM from using too much memory in the backup, and is

especially useful when checkpoints take a non-trivial amount of time to store due to decompression.2

2.3.2 Metrics

We identify important metrics to consider when using checkpoint compression in a HA system,

and evaluate them in our framework. For each compression method, we evaluate the traffic reduc-

tion achieved in each checkpointing interval, and the memory and CPU used in the protected and

backup hosts to achieve such reduction. A compression method that uses excessive resources in the

protected host can create a non-trivial interference with the normal operation of the protected VMs.

The resource usage in the backup is also considered, since other active VMs may be running in the

host (and backed up elsewhere) and their performances can be affected.

The memory cost of a compression method is evaluated by the average memory usage of its key

data structures that enable page compression/decompression. CPU cost is evaluated by a per-page

metric. We measure the total CPU time taken by emulhacp to compress and send checkpoints for

all concurrently protected VMs. We then divide this time by the number of dirty pages processed,

and obtain the average CPU time spent for each page. Likewise, we obtain the average CPU time

taken by emulharcv to receive, decompress and store each page in the backup. These per-page

metrics facilitate a fair comparison between different compression methods.

2We use this simple scheme to facilitate evaluation and fair comparison of compression methods. Sophisticated flow

control schemes may be devised to regulate checkpoint traffic in real HA systems, taking into account the checkpointing

frequencies, compression methods and workloads used.

9
DISTRIBUTION A: Distribution approved for public release.

Besides consuming resources, compression affects the time required to replicate and store a

checkpoint. We evaluate the transfer time of each checkpoint, which starts when emulhacp begins

to send the checkpoint, and ends when an ACK for the checkpoint is received. Checkpoint transfer

time consists of two components: the time to process/compress the dirty pages (processing time),

and the time to send them over the network (sending time). Replicating compressed checkpoints

reduces sending time, but performing compression lengthens processing time. The overall effect of

compression on checkpoint transfer time must be quantified experimentally.

Checkpoint transfer time has a direct impact on achievable checkpointing frequency, which in

turn affect the performance and HA property of a protected VM. Since a subsequent checkpoint

may be replicated only after the on-going replication finishes, the actual (elapsed, not configured)

checkpointing interval must be larger than the transfer time of a checkpoint. If a compression

method incurs long transfer times, consecutive checkpoints must be separated by large intervals,

thus the achievable checkpointing frequency is lowered. This can degrade application performance

during normal operations, especially for latency-sensitive, server applications, since network pack-

ets are checkpointed and released infrequently. For computation jobs without external observers,

low checkpointing frequency results in a greater loss of completed work upon a fail-over, since the

VM has to resume execution from an earlier point in time.

The storage time of each checkpoint can also affect achievable checkpointing frequency and

the performance of a protected VM. It is the time required to decompress all dirty pages and store

their contents to the fail-over image. Without compression, checkpoint storage time is usually

very short, since memory copying is fast. However, checkpoint storage time can be significantly

lengthened when compression is used, if dirty page decompression involves complex steps or heavy

computations. Checkpoint replication can become bottlenecked on slow storage of checkpoints: a

new checkpoint may be delayed waiting for a previous one to be completely stored so that the buffer

space can be utilized, since a protected VM is not allowed to use unlimited memory in the backup.

2.4 Checkpoint Compression

Using the framework and metrics discussed in Section 2.3, we evaluate the three compression

methods described below.

2.4.1 Existing Techniques

gzip is a commonly-used, general-purpose compression algorithm. Its application on checkpoint

traffic was briefly discussed in [39] without a thorough evaluation. We implemented gzip using

zlib [23] to evaluate it thoroughly and in comparison with other methods.

Delta compression identifies the parts in a dirty page that are changed when the page is written to,

i.e., the page delta, and replicates the delta to the backup instead of the entire page. It has been used

in a few HA systems [69, 80].

Before sending a checkpoint, each dirty page is XOR’ed with its content in the last checkpoint-

ing interval. The outcome is compressed by RLE (Run-Length Encoding) [77], and the compression

result is sent to the backup. To restore the page content in the backup, the RLE result is decoded,

and the outcome is XOR’ed with the content of the page in the fail-over image; no extra memory

copying is needed. Since keeping the prior content of every page incurs a 100% memory overhead,

like previous work, we maintain a fixed-size cache of transmitted dirty pages. If a dirty page finds

its prior content in the cache, delta compression is performed and the compression outcome is sent.

On a cache miss, the entire page is replicated without compression. We implemented a LRU cache

10
DISTRIBUTION A: Distribution approved for public release.

using a double linked list for efficient replacement and a lookup array to speed up queries. We use

Basic Compression Library [2] for RLE.

2.4.2 Exploiting VM Similarity

Since VMs in a virtualized datacenter are often created from template images consisting of the

same or similar operating systems and applications, they can load nearly identical kernel images and

software binaries into memory, and read duplicate data from common files. Many systems use this

content redundancy to enable page sharing [49, 58, 70, 96]. They detect duplicate contents in the

entire memory space of co-located VMs, and coalesce identical pages in the same physical frame to

save host memory.

We argue that not only may VMs be created from similar sources, even as they execute, various

activities can keep changing their memory state in similar ways. For example, during maintenance, a

group of VMs is updated with the same set of security patches at the same time. Also, in computing

clusters, multiple VMs (and multiple processes in each VM) collaborate to finish computation-

intensive tasks, each running the same application code and working on a common set of data. These

VMs are often checkpointed at the same time intervals to gain a comparable level of protection, and

the similar changes made to their memory may generate similar dirty pages in their checkpoints.

We therefore explore similarity compression, which finds content redundancy in VM checkpoints

and sends only one copy of the duplicate contents to reduce checkpoint traffic.

To detect content redundancy, we divide each dirty page into multiple chunks, and process

checkpoints by chunks. Unique chunks are separated from duplicate chunks. A unique chunk

contains a content different from any other chunks that have been processed. This content must

be replicated to the backup in full. A duplicate chunk contains a content that is identical to at

least one other chunk. Since the duplicate content can be found in another chunk that is already

replicated (called a reference chunk), instead of sending the chunk again, we send a pointer to locate

the reference chunk in the backup.

For similarity compression to be practically useful, two important requirements must be met:

(1) unique and duplicate chunks must be separated quickly, and (2) the pointers sent for dupli-

cate chunks must be small, yet contain enough information to restore the duplicate contents in the

backup. To meet these requirements, we build a hash table in the protected host. The hash table

maps a chunk content to a chunk location that has the content. Chunk location is described by the

VM to which the chunk belongs and the offset of the chunk in the checkpoint containing it. Chunk

content is compactly represented and efficiently compared using the MD5 digest of the chunk. We

also tested Rabin fingerprinting [79] over a sliding window, another commonly used method of de-

tecting content redundancy, but found that to be much slower. For efficiency, we chose to detect

duplicate fixed-size chunks by hashes.

In each checkpointing interval, the hash table is initially empty, and the checkpoints taken for

concurrently protected VMs are processed together. For each chunk in the checkpoints, we compute

its MD5 digest, and query the hash table by the digest. If the digest is not found in the hash table,

the chunk content is sent to the backup, since this is a unique content that is not seen before. A new

entry is inserted into the hash table to record the content and location of the chunk.

If the hash table lookup finds the chunk digest, we have a duplicate chunk, and the matching

hash entry records the location of a replicated chunk with the same content, that is, the reference

chunk. The location of the reference chunk is sent to the backup as a pointer, following which the

duplicate content can be retrieved when incorporating the checkpoint into the fail-over image.3 The

3In our current implementation, each hash entry is 20 bytes. Chunk location is encoded in 4 bytes in the entry, and the

11
DISTRIBUTION A: Distribution approved for public release.

HPC-C [8]

A suite of 7 calculation-intensive benchmarks essential to long-running scientific jobs.

We run HPC-C in a single VM and also in multiple VMs that collaborate via MPI. Each

VM uses 512 MB RAM.

RUBiS [15]

An auction site benchmark modeled after ebay.com. We use a three-tier setup: a back-

end database, a RUBiS server (Apache/PHP) and a client emulator. Each tier runs in a

separate VM on a separate host. Our experiments use checkpoints of the RUBiS server (a

512 MB VM).

FFmpeg [3]

An open-source tool to “transcode” video/audio files, i.e., to convert their codecs and

formats. The transcoded media are usually fed to a real-time streaming service to fulfill

requests from external clients. We run FFmpeg in a 512 MB VM.

VoltDB [22]

An in-memory database. We run it in a 1.75GB VM to support a TPC-C-like workload

generated from a client VM running in a separate host. This OLTP workload simulates an

order-entry environment for a business with multiple warehouses [18]. Our experiments

use checkpoints of the VoltDB server.

Table 2.1: The workloads used in our evaluation and their setup.

reference chunk may belong to the same, or a different VM than the duplicate chunk does, upon

detection of intra- and inter-VM similarity, respectively.

To increase the chance of finding and eliminating redundancy in checkpoint traffic, we also

explore maintaining the hash table beyond interval boundaries. Instead of rebuilding the hash table

in every checkpointing interval, we rebuild it every few intervals. With a multi-interval hash table,

a duplicate chunk may contain the content of a chunk seen in a past interval. However, when a past

chunk content is referenced, the referenced chunk in the fail-over image may have been overwritten

with a recent content. To ensure correct restoration of all duplicate contents, when a multi-interval

hash table is used, a replicated (unique) chunk is cached in the backup until the next time the hash

table is rebuilt and the chunk’s content can no longer be referenced by other chunks.

2.5 Experimental Results

This section presents and analyzes our evaluation results of the three compression methods.

Section 2.5.1 describes the workloads and testbed used in our evaluation. Section 2.5.2 evaluates the

traffic reduction achieved by each compression method. Section 2.5.3 and Section 2.5.4 evaluate the

resource and time overheads incurred by each method for achieving traffic reduction, respectively.

2.5.1 Workloads and Testbed

The computation tasks needing HA most are the ones that are not repeatable or prohibitively

expensive to repeat after a failure occurs. These tasks include server workloads that constantly

interact with external clients, and long-running computing jobs such as scientific computations.

Our evaluation uses four different workloads of these types. Table 2.1 summarizes the workloads

we use and their setup.

We run the workloads in VMs, take periodic checkpoints of the VMs for two minutes of work-

load execution, and store the checkpoints taken for repeated use in our various experiments. For

each workload, we capture multiple series of checkpoints, each using a different checkpointing in-

terval length. We use sub-second (25, 50 and 100 ms) checkpointing intervals to reflect those used

remaining 16 bytes contain the MD5 digest of the chunk.

12
DISTRIBUTION A: Distribution approved for public release.

Checkpoint Checkpointing Intervals (ms)

Sizes (MB) 5000 2000 1000 100 50 25

HPC-C 19.3 18.2 13.1 3.1 2.1 1.7

RUBiS 13.0 11.4 8.2 4.4 4.1 3.7

FFmpeg 19.0 12.9 10.8 8.0 6.8 5.4

VoltDB 396.7 207.5 114.4 20.0 13.2 9.6

Table 2.2: The average checkpoint sizes of each workload.

in current HA systems [39], and also longer (1, 2 and 5 secs) intervals to explore a wider parameter

space. For two minutes of workload execution, checkpointing every 5 seconds to every 25 ms gen-

erates 24 to 4800 checkpoints in each series. Table 2.2 summarizes the average checkpoint sizes of

the different workloads. While in some cases individual checkpoints seem small, especially when

taken at short intervals, sending these checkpoints frequently creates excessive network traffic in

only two minutes, as discussed in Section 2.2.2.

All checkpoints are taken on HP Proliant BL465c blades, each with two dual-core AMD Opteron

2.2GHz CPUs, 4–8 GB RAM, one GbE NIC and two SAS 10K rpm disks. All our experiments are

run on the same testbed. emulhacp and emulharcv run on top of Xen in the Domain-0 of two

separate blades in the same LAN; this setup resembles the typical setup in a virtualized datacenter

where protected and backup hosts are connected by an internal LAN for management operations.

In each experimental run, emulhacp and emulharcv process complete series of checkpoints, and

report average results over the checkpoints processed.

2.5.2 Traffic Reduction

We first evaluate how each compression method reduces checkpoint traffic for a single protected

VM. Figure 2.2 shows the traffic reductions achieved when different workloads are running in the

protected VM. gzip is effective for various workloads and checkpointing frequencies. It reduces

traffic by 40–80% in our evaluation.4 Smaller traffic reductions are achieved for FFmpeg and HPC-

C at 1-second and longer checkpointing intervals. These FFmpeg checkpoints contain large amounts

of media contents that are already encoded by video/audio codecs, and hence are not compressed

much further by gzip. The HPC-C checkpoints have many numerical values from the computation

matrices of the workload. The randomness of these values are not friendly to the gzip compression

algorithm.

We evaluate delta compression starting with a 32 MB delta cache, which is large enough to

store at least one complete checkpoint for most of the workloads and checkpointing frequencies

we use. To test the sensitivity of traffic reduction to cache size, we also evaluate a smaller (16

MB) cache. The traffic reductions achieved by delta compression vary widely in our experiments,

ranging from 0% to 92% for different workloads and checkpointing frequencies. The effectiveness

of delta compression is mainly impacted by how the delta cache is sized in relation to the size of the

checkpoints. Our results suggest that to achieve more than 40% traffic reductions, the delta cache

must be larger than the average checkpoint size of the workload under the checkpointing frequency

used.

A 16 MB cache is effective for RUBiS. When RUBiS is checkpointed at sub-second intervals,

a 16 MB cache holds at least 5 consecutive checkpoints, and keeps a good history of the dirty page

4We use level 1 (fastest) compression for gzip. Our experiments with higher levels of compression show only 1-2%

more reductions with a 4x CPU overhead for gzip.

13
DISTRIBUTION A: Distribution approved for public release.

 0

 20

 40

 60

 80

 100

25 50 100 1000 2000 5000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

(a) HPC-C

 0

 20

 40

 60

 80

 100

25 50 100 1000 2000 5000
T

ra
ffi

c
R

ed
uc

tio
n

(%
)

Checkpointing Interval (ms)

(b) RUBiS

 0

 20

 40

 60

 80

 100

25 50 100 1000 2000 5000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

gzip
delta-16M
delta-32M
sim-256B

sim-1K
sim2-256B

sim2-1K

(c) FFmpeg

 0

 20

 40

 60

 80

 100

25 50 100 1000 2000 5000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

(d) VoltDB

Figure 2.2: The traffic reductions achieved for a single protected VM running different workloads.

The ”sim-*” lines show the traffic reductions achieved by similarity compression using

different chunk sizes and a single-interval hash table, and the ”sim2-*” lines show those

achieved using a two-interval hash table.

14
DISTRIBUTION A: Distribution approved for public release.

contents of the workload. The cache produces over 98% hit rates, letting almost all checkpointed

pages be compressed before network transmission. In these cases, delta compression outperforms

gzip and achieves up to 92% traffic reduction.

A 16 MB cache becomes ineffective at 1-second and longer checkpointing intervals for HPC-C.

In these cases, using a 32 MB cache improves traffic reductions by an additional 41–81%, thanks to

a 49–89% increase of cache hit rate. However, a 32 MB cache is still far from enough for VoltDB.

At 1-second and longer intervals, the checkpoint traffic of VoltDB is not reduced at all. Each of

these VoltDB checkpoints contains 100–400 MB of dirty page contents, much more than the delta

cache can hold, and all cached dirty pages have to be replaced before enabling any compression.

Thus, to reduce VoltDB checkpoint traffic reasonably in these cases, hundreds of MBs of RAM

must be provisioned for the delta cache.

Given a sufficiently large cache, delta compression is more effective for workloads that modify

memory pages by smaller areas. We observed that even though the cache is comparably effective

for FFmpeg and RUBiS, producing over 97% hit rates for both workloads at sub-second intervals,

the checkpoint traffic of FFmpeg is reduced by 34–45% less than that of RUBiS. Our off-line anal-

ysis shows that, upon a cache hit, a dirty page of RUBiS is compressed by more than 80%, while

FFmpeg’s dirty page is compressed by less than 50%. This is because RUBiS modifies small areas

in memory pages, but FFmpeg changes each page significantly by reading media contents in 4 KB

blocks from disk to be transcoded; compressing FFmpeg’s buffer pages by the changes from their

past contents does not reduce data size effectively.

We evaluate similarity compression using 256 byte, 1 KB and 4 KB chunks to detect and remove

redundancy in checkpoint traffic. For each workload, using 256 byte chunks always reduces traffic

more effectively than using 1 KB chunks, which is, in turn, more effective than using 4 KB chunks.

In our experiments concerning a single protected VM, similarity compression achieves smaller traf-

fic reductions comparing to gzip and delta compression, ranging from 12% to 62% reduction using a

single-interval hash table and 256 byte chunks. In these cases, similarity compression can only uti-

lize intra-VM similarities—traffic is reduced by removing the duplicate checkpoint contents within

each VM, since only one VM’s checkpoints are processed at a time.

Even in the cases of only one protected VM, our results confirm and quantify the intuition

that similarity compression is particularly effective for workloads that have multiple components

collaborating on a shared data set. Similarity compression is particularly effective for HPC-C in

the four workloads evaluated. Using only intra-VM similarity and a single-interval hash table, HPC-

C checkpoint traffic is reduced by 47–62% at 1-second and longer intervals. We initially suspected

that much of the reduction comes from the elimination of zero pages, generated upon memory

allocations by the workload. An off-line analysis shows that less than 2.5% of these checkpointed

pages contain all zeros. Thus, similarity compression reduces checkpoint traffic effectively for

HPC-C by removing the non-zero workload data duplicated in the multiple processes spawned by

the workload to collaborate on computation problems.

Maintaining the hash table across checkpointing interval boundaries improves the effectiveness

of similarity compression, especially when checkpoints are taken at sub-second intervals. Using

a multi-interval hash table, similarity compression not only removes the checkpoint contents du-

plicated in the current interval, but also those duplicated with the dirty page contents in the past

intervals. Similarity compression achieves up to 25% additional traffic reduction by rebuilding the

hash table every two intervals, rather than in every interval. Expanding the hash table further to

cover 3 consecutive intervals yields another 10% more traffic reduction, compared to that achieved

with a two-interval hash table.

A multi-interval hash table improves traffic reduction especially in short checkpointing intervals,

where dirty pages are likely modified by a small degree—similarity compression thus finds and

15
DISTRIBUTION A: Distribution approved for public release.

 0

 20

 40

 60

 80

 100

25 50 100 1,000 2,000 5,000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

Single−VM
4−VM
4−VM, 2−intv.

(a) An independent HPC-C

 0

 20

 40

 60

 80

 100

25 50 100 1,000 2,000 5,000

T
ra

ffi
c

R
ed

uc
tio

n
(%

)

Checkpointing Interval (ms)

(b) A collaborating HPC-C

Figure 2.3: The traffic reductions achieved by similarity compression for a HPC-C VM when the

VM’s checkpoints are processed alone (Single-VM), together with other VMs’ check-

points in a 4-VM HPC cluster (4-VM), and using a two-interval hash table (4-VM,

2-intv.)

eliminates much more checkpoint redundancy when prior page contents are available in a multi-

interval hash table for comparison. Our results also suggest that in these cases, expanding the time

coverage of the hash table improves traffic reductions more effectively than refining the granularity

of the hash table, i.e., detecting redundancy by smaller chunks. As shown in Figure 2.2, at sub-

second intervals, similarity compression reduces checkpoint traffic more effectively using 1 KB

chunks with a two-interval hash table, comparing to using 256 byte chunks with a single-interval

hash table.

2.5.2.1 Multiple Concurrently Protected VMs

We apply the compression methods to the checkpoint traffic of four VMs simultaneously, and

evaluate the traffic reductions achieved in the following two scenarios: (S1) a HPC cluster, represen-

tative of a homogeneous workload environment, and (S2) A heterogeneous mixture of workloads.

In S1, each of the four VMs runs an instance of HPC-C. To introduce realistic workload differences

in S1, VM1 and VM2 work independently on different problem sets, and VM3 and VM4 collab-

orate on a third, larger set of problems. In S2, the four VMs run HPC-C, RUBiS, FFmpeg and

VoltDB, respectively. In both scenarios, the VMs are co-located in a single protected host, and their

checkpoints are captured at the same frequency.

The overall traffic reduction achieved in a multi-VM cluster roughly equals the average of the

traffic reductions achieved for the individual VMs, weighted by the VMs’ respective checkpoint

sizes. This is a good estimate especially for gzip and delta compression, which process the check-

point traffic of each VM independently. Similarity compression is the only method in the three

methods evaluated that may achieve additional traffic reductions when processing checkpoints of

multiple VMs concurrently, since inter-VM similarity can be utilized—dirty page contents dupli-

cated across VM boundaries are also eliminated to further reduce checkpoint traffic.

To understand the effect of exploiting inter-VM similarity, we select a VM, and compare the

traffic reductions achieved for this VM when its checkpoints are processed alone, versus together

with other VMs’ checkpoints in a cluster. This comparison is more reasonable than simply compar-

ing the overall traffic reductions achieved in single- and multi-VM scenarios, since that observed in

a multi-VM cluster is biased by the individual VMs’ checkpoint sizes.

16
DISTRIBUTION A: Distribution approved for public release.

We would like to answer the following questions about inter-VM similarity: (1) How well

does inter-VM similarity, when utilized, improve checkpoint traffic reductions in a homogeneous

workload environment? (2) In a homogeneous workload environment, does VM collaboration affect

the level of inter-VM similarity that is present? (3) How well does inter-VM similarity and multi-

interval hash tables, when used together, improve the effectiveness of similarity compression? (4)

Is there any inter-VM similarity in a heterogeneous workload environment?

Figure 2.3(a) shows the traffic reductions achieved by similarity compression for VM1 in sce-

nario S1, which works on a HPC problem set independently. When its checkpoints are processed

together with the checkpoints of the other three VMs in the cluster, an additional 2–11% traffic

reduction is achieved, compared to processing its checkpoints alone. Figure 2.3(b) shows the traffic

reductions achieved for VM3 in scenario S1, which collaborates with another VM in the cluster

on the same HPC problem set. Processing this VM’s checkpoints with the other VMs’ results in

greater additional traffic reductions of 11–20% more; even in short, sub-second intervals, non-trivial

amounts of inter-VM similarity and thus traffic reduction improvements are observed. Exploiting

inter-VM similarity with a two-interval hash table, similarity compression reduces checkpoint traffic

by 57–81% for these VMs, as effectively as gzip.

Similarity compression is effective for homogeneous workload environments, where non-trivial

amounts of inter-VM similarity exist, especially when VMs collaborate on a common task set. How-

ever, limited similarity is found between VMs running heterogeneous workloads, for which similarity

compression is a poor fit. We found in the workload mixture of scenario S2 that each VM’s check-

point traffic is hardly reduced further when their checkpoints are processed together, compared to

processed independently. In the four VMs in S2, the greatest improvement on traffic reduction is

observed for RUBiS to be only 6% more.

Note that the additional traffic reductions achieved by similarity compression in a multi-VM en-

vironment may be considered a lower-bound of the inter-VM similarity present in the environment,

for two reasons. First, one copy of the duplicate contents must be sent over the network, and is

not counted in traffic reduction. Second, some contents are duplicated both across VM boundaries

and within individual VMs, and are already removed when processing checkpoints of individual

VMs independently. The elimination of these duplicates is thus not reflected in the additional traffic

reduction gained by processing checkpoints of multiple VMs together.

2.5.3 CPU and Memory Costs

We now examine the resource requirements for each compression method to achieve the traffic

reductions presented in Section 2.5.2.

Figure 2.4 shows the per-page CPU cost of the compression methods measured in the protected

and backup hosts. We show the measurements taken at 100 ms checkpointing intervals for the

single protected VMs running the different workloads; the measurements in our other experimental

cases have consistent trends. In our experiments, checkpoint replication for each VM can use one

CPU core in the protected and backup hosts, respectively. The CPU usage in the protected host is

generally larger than that in the backup host, as shown in Figure 2.4.

While reducing checkpoint traffic effectively, gzip requires significant CPU for compression. In

the protected host, gzip typically shows an above 80% CPU usage. It incurs the largest CPU cost

in the three methods evaluated. It also uses more CPU when compressing less effectively: gzip

achieves lower traffic reductions at higher CPU costs for FFmpeg and HPC-C compared to the other

workloads. While gzip can operate at a minimal memory cost—a 4 KB buffer per VM to contain the

compression outcome as checkpoints are processed page-by-page, its high CPU usage can greatly

impact the protected VMs’ normal operation, especially when checkpoints of multiple protected

17
DISTRIBUTION A: Distribution approved for public release.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Baseline gzip Delta Sim Sim2

C
P

U
 T

im
e/

P
ag

e
(u

s)

hpcc
rubis
ffmpeg
voltdb

(a) In the protected host

 0

 20

 40

 60

 80

 100

 120

 140

 160

Baseline gzip Delta Sim Sim2

C
P

U
 T

im
e/

P
ag

e
(u

s)

(b) In the backup host

Figure 2.4: The CPU cost of checkpoint replication for a single protected VM running different

workloads. No compression is used in the baseline. Delta cache is 32MB. Similarity

compression uses 256 byte chunks with a single-interval (Sim) and a two-interval (Sim2)

hash table.

VMs are processed concurrently.

Delta compression uses less CPU for compression than gzip. It typically shows a 70–80% CPU

usage in the protected host. Though it uses fixed-size caches of 16MB and 32MB in our experi-

ments, we note that for workloads that dirty large areas of memory rapidly, delta compression can

use excessive RAM in the protected host to cache transmitted dirty pages for effective compression.

VoltDB is an example of such workloads. At 1-second and longer intervals, delta compression can-

not reduce VoltDB’s checkpoint traffic at all using 16MB and 32MB caches. To achieve reasonable

traffic reductions in these cases, up to 400MB of memory is required for the delta cache, since as

discussed in Section 2.5.2, delta compression needs a cache larger than the average checkpoint size

to reduce checkpoint traffic by more than 40%. If a few such VMs are protected at the same time,

the total memory consumption of delta compression can grow quickly and create memory pressure

in the protected host.

In the three methods evaluated, similarity compression uses CPU most efficiently. Typically, it

shows a 50–60% CPU usage in the protected host. Higher CPU costs are incurred when checkpoints

are processed by smaller chunks, since more MD5 digests are computed for each dirty page. But

even when using 256 byte chunks (computing 16 digests per page), its CPU cost is the lowest

of the three methods evaluated. Similarity compression also uses little CPU in the backup host,

since it “decompresses” checkpoints simply by copying duplicate contents from reference chunks,

requiring no additional computations. In some cases, it even uses less CPU than receiving and

storing uncompressed checkpoints in the backup (the baseline), thanks to the reduced checkpoint

data sizes.

Similarity compression requires memory in the protected host for the hash table. The hash table

installs one entry for each unique chunk processed, so it uses more memory as more unique chunks

are recorded. Figure 2.5(a) shows the memory cost of similarity compression with a single-interval

hash table. In the four workloads, similarity compression incurs the smallest memory costs for

HPC-C and the largest memory costs for VoltDB. It uses up to 20 MB of memory to record the

chunk contents of the large VoltDB checkpoints in the hash table. For the other three workloads, it

incurs low memory overheads, ranging from 95 KB to 1.3 MB when using 256 byte chunks, and

less (8–350 KB) when 1 KB and 4 KB chunks are used.

Similarity compression uses memory more efficiently in the presence of greater VM similarity,

18
DISTRIBUTION A: Distribution approved for public release.

 0

 5

 10

 15

 20

 25

25 50 100 1,000 2,000 5,000

M
em

or
y

C
os

t (
M

B
)

Checkpointing Interval (ms)

hpcc
voltdb
4−VM HPC cluster
4−VM workload mixture

(a) A single-interval hash table

 0

 50

 100

 150

 200

25 50 100 1,000 2,000 5,000

M
em

or
y

C
os

t (
M

B
)

Checkpointing Interval (ms)

274 304

(b) A two-interval hash table

Figure 2.5: The memory cost of similarity compression using 256 byte chunks.

since less unique chunks need to be stored in the hash table. In our 4-VM HPC cluster (scenario

S1 in Section 2.5.2.1), it uses less than 2 MB of memory at all times to process the checkpoints of

all four VMs concurrently with a single-interval hash table, and is able to reduce checkpoint traffic

effectively thanks to the significant intra- and inter-VM similarity present in the cluster. However,

in the workload mixture of scenario S2, it uses up to 22 MB of memory with most entries in the

hash table recording the unique contents of the large VoltDB checkpoints.

Larger memory costs are incurred when similarity compression uses a two-interval hash table,

as shown in Figure 2.5(b), since additional memory in the backup is required to cache the unique

chunks in the previous interval for possible references; this cache constitutes the main part of the

memory consumptions. In the HPC cluster of scenario S1, using a two-interval hash table improves

traffic reduction—similarity compression reduces checkpoint traffic by up to 81%, at a moderate

memory cost of 2–18 MB. However, in a heterogeneous workload environment, like the workload

mixture in scenario S2, a multi-interval hash table may not be suitable. Since limited VM similarity

exists in such an environment, a multi-interval hash table may likely incur a large memory over-

head by caching unique checkpoint contents in the backup, without effectively improving traffic

reduction.

2.5.4 Checkpoint Transfer and Storage Time

In addition to consuming resources, checkpoint compression affects the time taken to transfer

and store each checkpoint. Figure 2.6 shows the average checkpoint transfer time incurred by a

single protected VM running the different workloads. For all workloads, transfer time is the shortest

when compression is not used (the baseline), ranging from 16 to 188 ms except for VoltDB; VoltDB

checkpoints are larger and each takes much longer to finish replication.

In these experiments concerning a single protected VM, uncompressed VM checkpoints are

usually replicated within each configured interval, unless the intervals are 50 ms and shorter. Take

FFmpeg as an example. When checkpointed every 50 and 25 ms, an uncompressed checkpoint

takes an average of 61 and 49 ms, respectively, to replicate. Since each checkpoint does not finish

replication within the configured interval time, subsequent checkpoints must be delayed, and the

configured checkpointing frequencies (one checkpoint every 50 and 25 ms) are not achieved. For

VoltDB, even lower frequency of checkpointing every 1 second cannot be achieved.

Compression lengthens the checkpoint transfer time incurred by the single protected VMs, and

gzip requires the longest transfer times in the three methods evaluated. Figure 2.7 plots the ratio of

19
DISTRIBUTION A: Distribution approved for public release.

 0

 100

 200

 300

 400

 500

 600

 700

 800

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

gzip
delta-32M
sim-256B
baseline

(a) HPC-C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

(b) RUBiS

 0

 200

 400

 600

 800

 1000

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

(c) FFmpeg

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

25 50 100 1000 2000 5000
T

ra
ns

fe
r

T
im

e
(m

s)

Checkpointing Interval (ms)

(d) VoltDB

Figure 2.6: The checkpoint transfer time of a single protected VM running different workloads.

the measured transfer time in Figure 2.6 to the configured checkpointing interval. A ratio greater

than 1 indicates that the elapsed time between two consecutive checkpoints is larger than the con-

figured interval length, and the configured checkpointing frequency is not achieved. Even though

gzip sends only 20–60% of the original checkpoint data over the network, it incurs transfer times

up to 14x longer than the configured checkpointing interval, due to performing compression. As

a result, for VoltDB, none of the checkpointing frequencies evaluated can be achieved, and for all

other workloads, checkpointing every 100 ms and higher frequencies are no longer feasible when

gzip is used. The long checkpoint transfer times required by gzip can limit its applicability for

server applications that are very sensitive to network latencies.

Similarity compression requires the shortest checkpoint transfer times for the single protected

VMs, as well as the shortest checkpoint storage times in the three methods evaluated. It takes 1.5x

less time than delta compression to replicate each checkpoint of the protected VM using 256 byte

chunks and a single-interval hash table. Even shorter transfer times are required when processing

checkpoints by larger chunks and a multi-interval hash table. It also stores each replicated check-

point to the fail-over image as fast as if compression were not used, incurring almost the same

amount of checkpoint storage time as in the baseline cases, as Figure 2.8 shows.

Checkpoint decompression of gzip and delta compression takes a non-trivial amount of time

to complete, resulting in prolonged checkpoint storage times and lowering the checkpointing fre-

quency actually achieved. In our experiments, gzip and delta compression incur up to 10x and 13x

longer storage times compared to similarity compression, respectively. We observed that using the

two methods, replication of a subsequent checkpoint is often delayed by the previous checkpoint

not being completely stored and releasing its buffer in time for a new incoming checkpoint, espe-

cially when checkpoints are configured to be replicated at sub-second intervals. The checkpointing

20
DISTRIBUTION A: Distribution approved for public release.

 0

 0.5

 1

 1.5

 2

 2.5

 3

25 50 100 1000 2000 5000

R
at

io

Checkpointing Interval (ms)

gzip
delta-32M
sim-256B
baseline

(a) HPC-C

 0

 1

 2

 3

 4

 5

 6

25 50 100 1000 2000 5000

R
at

io

Checkpointing Interval (ms)

(b) RUBiS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

25 50 100 1000 2000 5000

R
at

io

Checkpointing Interval (ms)

(c) FFmpeg

 0

 2

 4

 6

 8

 10

 12

 14

25 50 100 1000 2000 5000
R

at
io

Checkpointing Interval (ms)

(d) VoltDB

Figure 2.7: The ratio of the measured transfer time in Figure 2.6 to the configured checkpointing

interval.

frequencies actually achieved thus decrease.

2.5.4.1 Transfer Time in Multi-VM Environments

To understand how checkpoint transfer time varies when multiple VMs are concurrently pro-

tected, we consider the transfer times incurred by a HPC-C VM in our multi-VM experimental

scenarios S1 and S2, the HPC cluster and workload mixture, as shown in Figure 2.9.

While gzip consistently requires long transfer times, those incurred by similarity compression

show an interesting variation. As discussed above, similarity compression requires the shortest

transfer times in the three methods evaluated for the single protected VMs running different work-

loads. This observation remains true in our various experiments with a 2-VM HPC cluster. However,

as the number of VMs in the HPC cluster increases to 4 (scenario S1), in some cases, the transfer

times incurred by delta compression become the shortest. In the workload mixture (scenario S2),

similarity compression even takes as long as gzip to replicate each checkpoint.

These results suggest that similarity compression may lose the advantage of requiring small

checkpoint transfer times as the number of concurrently protected VMs increases, and we have

found that this is the case when the target environment is bottlenecked on network bandwidth, but

not CPU, as we will discuss below. Our testbed happens to represent such a computing environment.

Checkpoint transfer time consists of processing time, during which dirty pages are compressed,

and sending time, during which the pages are transferred over the network. Compression lengthens

processing time while reducing sending time, and the two components vary by different degrees

for different compression methods. A computation-intensive method can greatly increase process-

21
DISTRIBUTION A: Distribution approved for public release.

 0

 50

 100

 150

 200

 250

hpcc rubis ffmpeg voltdb

S
to

ra
ge

 T
im

e
(m

s) Baseline
gzip
D−32M
Sim−256B

Figure 2.8: The storage time of each checkpoint of a single protected VM running different work-

loads.

 0

 200

 400

 600

 800

 1000

25 50 100 1000 2000 5000

T
ra

ns
fe

r
T

im
e

(m
s)

Checkpointing Interval (ms)

gzip
delta-32M
sim-256B
baseline

(a) In a HPC cluster

 0

 200

 400

 600

 800

 1000

25 50 100 1000 2000 5000
T

ra
ns

fe
r

T
im

e
(m

s)

Checkpointing Interval (ms)

(b) In a workload mixture

Figure 2.9: The checkpoint transfer time of a HPC-C VM measured in our 4-VM HPC cluster and

workload mixture scenarios.

ing time, while an effective method greatly reduces sending time. The resource availability in the

target environment also impacts the two components in different ways: abundant CPU improves

processing time, while faster network improves sending time.

In an environment with limited network bandwidth (assuming abundant CPU), sending time

plays a more important role than processing time in the variation of checkpoint transfer time. Using

an effective method like gzip, less dirty data are sent for each protected VM, and as the number of

VMs increases, sending time grows more gently. By contrast, since similarity compression reduces

traffic less effectively, with more VMs concurrently protected, sending time increases more rapidly.

As a result, similarity compression may begin to require longer transfer times than the other methods

when the network becomes saturated.

We verify this reasoning by breaking down the transfer time measurements into processing time

and sending time. We estimate the (elapsed) processing time by the average CPU time spent for

each checkpoint. This estimate is reasonable, since there is minimal CPU sharing in our testbed:

when emulhacp spawns four threads to replicate checkpoints for 4 VMs in parallel, CPU is almost

always available to the threads in our server, which has 4 physical cores. We then consider the

remainder of the transfer time as sending time, which is a lower-bound of the time required to send

the dirty data (the part not overlapping with processing time).

Figure 2.10 shows the breakdowns of the transfer times incurred for a HPC-C VM measured in

a HPC cluster consisting of 1, 2, and 4 VMs; we show the breakdowns in cases of 1 second and

100 ms checkpointing intervals as an example. While similarity compression requires the shortest

processing time, as the number of VMs increases, its sending time grows by a larger degree com-

paring to gzip and delta compression. Comparing Figure 2.10(a) with Figure 2.10(b), the sending

22
DISTRIBUTION A: Distribution approved for public release.

 0

 100

 200

 300

 400

 500

 600

 700

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

T
ra

ns
fe

r
T

im
e

(m
s)

Baseline gzip D−32M		S−256B		

Sending
Processing

(a) 1sec intervals

 0

 20

 40

 60

 80

 100

 120

 140

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

1v
m

2v
m

4v
m

T
ra

ns
fe

r
T

im
e

(m
s)

Baseline gzip D−32M		S−256B		

(b) 100ms intervals

Figure 2.10: The breakdown of the checkpoint transfer times of a HPC-C VM measured in our HPC

clusters consisting of 1, 2 and 4 VMs.

time of similarity compression also increases more significantly in the cases of longer checkpoint-

ing intervals, where a larger amount of checkpoint data is generated in the network in each interval.

Therefore, similarity compression requires longer transfer times than delta compression when the

network is saturated to a certain degree. As the amount of checkpoint traffic keeps increasing,

similarity compression may take as long as gzip, or even longer, to replicate each checkpoint.

2.6 Discussions on Compression Method Selections

From our evaluation, one can hardly find a single best compression solution, and compression

methods should be selected based on the workload types and resource constraints in the target

environment.

Our results suggest that similarity compression is the most suitable for VM clusters running ho-

mogeneous workloads, especially when VMs in the cluster collaborate on a shared task set. In these

scenarios, similarity compression achieves satisfactory traffic reductions using both CPU and mem-

ory efficiently, and it becomes even more effective with a multi-interval hash table. For example,

using a two-interval hash table in our 4-VM HPC cluster yields up to 32% more traffic reduction

than a single-interval hash table would achieve, without incurring an undue resource overhead. The

additional traffic reduction also helps shorten checkpoint transfer time further; similarity compres-

sion regains the advantage of requiring the shortest transfer time in the three methods evaluated with

a two-interval hash table in our HPC cluster. Note, however, that maintaining the hash table across

many intervals may not be necessary, since the additional traffic reductions gained decrease with

increasing resource costs.

For other workload scenarios, especially a heterogeneous mixture of workloads, gzip and delta

compression are better suited. These methods are effective for a wider range of workload types than

similarity compression. When using them, the resource availability in the target environment must

be considered.

To use gzip, the protected host must have abundant CPU to support checkpoint compression

in addition to normal operation of protected VMs and applications. Since gzip generally reduces

checkpoint traffic effectively at a high CPU cost, it is bottlenecked on checkpoint compression rather

than transmission. If processing checkpoints of multiple VMs creates severe CPU contention in the

protected host, the usefulness of gzip can degrade. In such a case, not only are VM operations in

the protected host affected, each checkpoint of the protected VMs also takes longer to replicate.

Consequently, the VMs must be checkpointed at lower frequencies, and this can potentially make

23
DISTRIBUTION A: Distribution approved for public release.

gzip unusable for VMs running latency-sensitive server applications.

For delta compression to be effective, sufficient memory must be available and provisioned for

the delta cache. Our results show minimal traffic reductions when the delta cache is smaller than

the average checkpoint size of the protected VM. It is thus critical to properly size the delta cache

according to the memory access behavior of the target workloads and the checkpointing frequencies

used. A proper cache size may be determined by profiling the target workloads a priori. Alter-

natively, the cache may first be over-provisioned and then dynamically adjusted as the workloads

execute.

2.7 Related Work

This chapter examines the prohibitive network requirements of checkpoint replication. Two

types of approaches have been proposed to reduce checkpoint replication traffic in HA systems.

One reduces the amount of VM state to protect/checkpoint; the other checkpoints the full VM state,

but reduces the amount of data sent for each checkpoint taken.

RemusDB [69], a highly available database system in VM, uses the first approach. It does not

checkpoint clean disk buffers, and “de-protects” certain data structures in the database system that

can be regenerated after a failure. Therefore, it creates smaller checkpoints and less replication

traffic in the network. However, it requires in-depth understanding of the applications running in a

protected VM to identify data structures that can be safely de-protected. The VM and applications

must also be instrumented to recover un-checkpointed state after a fail-over.

Checkpoint compression exemplifies the second type of approach. Compression is generally

applicable regardless of the applications in the VMs, and requires less system instrumentation;

hence we focus on compression in our study presented in this chapter. The authors of [39] briefly

discussed compressing checkpoints by gzip and delta compression, although a thorough evaluation

was not included. RemusDB [69] and SecondSite [80], designed for database HA and datacenter

disaster recovery, respectively, use delta compression in their systems. They both find page delta by

XOR, and compress the delta by RLE, like evaluated in this chapter. Lu et al. propose fine-grained

dirty region tracking (FDRT) [64], which shares the same concept of delta compression. FDRT

divides each dirty page into fixed-size regions, and finds the regions that are actually modified by

comparing content hashes. It then replicates the modified regions to the backup instead of the entire

page. While delta compression has been used in HA systems and during live VM migration [92, 97],

our study compares it with other types of compression methods to understand when it is best suited

for use.

Similarity compression exploits memory content redundancy to reduce checkpoint replication

traffic. In a broader context, content redundancy is widely used for storage deduplication to improve

I/O performance [59, 78, 81], and in network infrastructures to improve network capacity and end-

to-end application performance [27, 28]. Content redundancy in VM memory is often utilized to

share identical pages and reduce host memory pressure [49, 70, 96]. Different from these systems,

which find and coalesce redundant pages in the entire memory space of co-located VMs, similarity

compression finds redundant data in dirtied memory pages. It also detects redundancy much more

frequently than these systems as well as VM migration systems that use redundancy elimination [82,

87, 97].

Gerofi et al. presents another way to utilize VM similarity and reduce checkpoint replication

traffic [48]. Instead of finding “identical” data in dirty pages, the authors find memory areas that

are “similar” to the dirty pages, and send only the differences between the dirty pages and these

memory areas over the network; their approach is currently applied to each VM independently. The

24
DISTRIBUTION A: Distribution approved for public release.

same idea has also been used to reduce VM migration traffic [42, 99]. Note that similarity com-

pression examines the content similarity in the memory space of live, executing VMs, in contrast to

systems like VMFlock [25], which utilize the similarity in VM disks to reduce the traffic incurred

for migrating static VM disk images.

2.8 Conclusions

Reducing checkpoint traffic is crucial to using checkpoint replication for maintaining VM avail-

ability. Although checkpoint compression methods are available, they have not been thoroughly

evaluated and compared in the context of supporting HA. In this chapter, we conducted a detailed

characterization of three checkpoint compression methods, gzip, delta compression, and similarity

compression, based on their effectiveness and overheads. Our evaluation uncovered the different

strengths and weaknesses of each method, and provided guidelines for selecting and using these

methods based on the workload types and resource constraints in a HA system. The evaluation

framework developed in this chapter is generic, and can be used to evaluate other compression

methods.

25
DISTRIBUTION A: Distribution approved for public release.

CHAPTER III

HydraVM: Memory-Efficient High-Availability for

Virtual Machines

3.1 Introduction

To restore a failed VM and resume its execution from where it left off in the failure, existing

approaches create a backup VM in a separate host for each primary running VM, and synchronize

a primary VM’s runtime state to its backup by replaying VM instructions [20, 32] or replicating

VM checkpoints [24, 39, 44, 47, 93]. The backup stands by in the background until a failure of the

primary occurs, at which point it becomes active and takes over execution from the primary’s state

before the failure.

Using backup VMs, existing HA approaches reduce the amount of completed work lost upon

failures, but at a high resource cost. In particular, each backup VM reserves as much memory as its

primary. This reserved memory space cannot be used by other VMs even though the backup remains

inactive during normal VM operations. Making backup memory reservation is expensive for several

reasons. First, each VM that desires HA support incurs a 100% memory overhead without any

increase in its system throughput. Second, the aggregate backup memory reservation made for a

group of protected VMs can significantly and unproductively consume RAM, a scarce and expensive

resource. Third, as many-core processors become pervasive, memory is increasingly the resource

bottleneck of VM consolidation [49]. Inactively blocking host memory for backup VMs may hinder

effective consolidation of active running VMs, and result in under-utilization of other host resources

(e.g., CPU cores) and degradation of the overall resource efficiency in a virtualized environment.

In this chapter, we propose HydraVM, a memory-efficient HA approach for VMs. The primary

objective of HydraVM is to protect VMs against failures of their hosting machines without any

backup memory reservation. Instead of creating a backup VM, HydraVM keeps track of the runtime

state of a protected VM in a fail-over image maintained in a networked, shared storage, which is

commonly deployed in a virtualized environment to hold VM disks and facilitate VM management

and migration. In case of a failure, HydraVM quickly restores the VM from the fail-over image and

resumes its execution.

HydraVM keeps track of VM runtime state by taking incremental VM checkpoints, as existing

HA systems do [24, 39, 44, 47, 93]. Different from existing systems, which store the checkpoints

taken in an in-memory backup VM, HydraVM consolidates the checkpoints in a shared storage.

HydraVM utilizes inexpensive storage, and frees up expensive RAM for better usage. A failed

VM can be recovered in any host that has sufficient resources, since HydraVM maintains the VM

state needed by fail-over in a shared storage instead of a dedicated backup host. However, fast

VM recovery is challenging for HydraVM, since the fail-over state must be loaded from the shared

storage. To bring a failed VM back alive quickly, HydraVM performs a slim VM restore, which loads

26
DISTRIBUTION A: Distribution approved for public release.

only a small amount of critical VM state from the fail-over image to restore a VM, and activates the

execution of the restored VM immediately. As the VM executes, the VM state not yet loaded are

supplied on-demand.

HydraVM was not intended to provide “hot mirroring” of VM state as existing approaches that

use in-memory backup VMs do, since each VM checkpoint takes longer to store on a storage de-

vice than in memory. With hot mirroring, existing approaches buffer, and checkpoint, VM network

outputs before releasing them, to provide transparent failure recovery for client-facing applications.

However, even with hot mirroring, latency-sensitive applications can suffer from significant perfor-

mance degradations due to network buffering [39, 44]. HydraVM does not buffer network outputs

for protected VMs with its “warm mirroring” of VM state, and therefore, does not provide trans-

parent recovery for server applications. We make this tradeoff to maintain fail-over VM state in

inexpensive storage, and provide a cost-effective HA alternative for applications which do not re-

quire network buffering, including long-running computation jobs and distributed applications that

run in a VM cluster. These applications benefit from the protection of HydraVM at a reduced

resource cost without requiring any modification.

We implemented HydraVM based on Xen, and evaluated it using workloads that may benefit

from HydraVM. Our results show that HydraVM provides VM protection at a low overhead, and

can recover a failed VM within 2.2 seconds. While the individual techniques used in HydraVM

have been applied to different problems, the contribution of this chapter is a new combination of the

techniques that solves the real-world problem of providing resource-efficient HA support for VMs

and the demonstration of the applicability of this solution. Our aim is not to replace existing HA

approaches that use in-memory backups—they are needed especially for client-facing applications

to benefit from transparent failure recovery, but rather to complement the HA toolbox currently

available with a cost-effective alternative.

The remainder of this chapter is organized as follows. Section 3.2 discusses the design rationale,

and provides an overview of HydraVM. Section 3.3 and Section 3.4 detail the VM protection and

recovery mechanisms in HydraVM, respectively. Section 3.5 evaluates HydraVM experimentally.

Section 3.6 discusses alternative storage architectures that HydraVM may take advantage of, espe-

cially in large environments. Section 3.7 summarizes related work, and the chapter concludes with

Section 3.8.

3.2 HydraVM Design

The design of HydraVM is based on a key observation that existing HA approaches incur a high

cost by maintaining backup VMs in memory. It is our primary objective to reduce backup memory

reservation and provide a memory-efficient HA alternative.

3.2.1 Storage-based VM High-Availability

One may consider downsizing backup memory reservation by memory ballooning [96]. Bal-

looning is designed for adjusting VM memory allocation at runtime, and requires the VM to coop-

erate. It is very challenging for a backup VM to exercise its balloon driver, since the backup may

not be operational, and its state changes must follow that of the protected VM very closely.

Another way to reduce the overhead of backup memory reservation is to make the memory us-

able for other actively running VMs, i.e., to time-share a backup VM’s memory space with other

VMs in the host. To do this, a host-wide paging system may be needed to schedule physical page

frames between hosted VMs. Unfortunately, since this extra level of paging can introduce per-

formance anomalies due to unintended interactions with the paging system in the guest OS [96],

27
DISTRIBUTION A: Distribution approved for public release.

current platform virtualization technologies, such as Xen and VMware ESX, either do not support,

or do not prefer host-wide paging. It is thus difficult to let other running VMs use the memory

reserved by a backup.

A third alternative is to page out backup VMs [34], reclaim their memory and re-distribute to

active VMs. This approach appears feasible, since a backup VM remains inactive until the protected

VM fails. However, to be able to take over execution from where the protected VM left off in

the event of a failure, the backup needs to be swapped in very frequently to synchronize with the

execution state of the protected VM. This overhead is non-trivial, and can offset the resource benefits

gained by swapping the backup out.

HydraVM “pages out” the backup VM to eliminate the unproductive reservation of backup

memory, and shortcuts the state synchronization process by updating the backup’s on-disk pages

without paging them back in. In other words, HydraVM takes a storage-based approach. Instead

of reserving memory in an additional server, we “maintain” the backup VM in a stable storage.

For each protected (primary) VM, HydraVM maintains in a networked, shared storage the state

needed by fail-over, based on which a backup VM can be quickly restored and activated to take over

execution when the primary fails. The storage system holding the VM fail-over states is assumed to

be fail-independent of and accessible from the physical servers that host VMs.

Rather than adding a new shared storage into a virtualized environment for the sole purpose of

providing VM protection, HydraVM utilizes the one that is already installed—the shared storage

commonly deployed as a central store for VM images. This shared storage may be provisioned in

various ways in practice, to deliver the aggregate capacity and combined throughput of a federation

of devices and meet the I/O demands of all VMs running in the environment. For example, it

may be a shared block storage accessed via a Fibre Channel or iSCSI-based storage area network

(SAN), or a cluster filesystem. To ensure undisrupted accesses to VM data, this storage is usually

built with redundant connections to and from the VM hosts, as well as storage-level reliability

mechanisms against device and controller failures. HydraVM depends on these properties to assume

the reliability and availability of the shared storage, and focuses on maintaining VM availability in

the face of VM host failures.

3.2.2 An Overview of HydraVM

HydraVM is designed to provide VM protection from fail-stop host failures. It does not attempt

to recover VM execution from non-fail-stop conditions caused by configuration errors, software

bugs, and so on.

HydraVM has two operation modes, protection and recovery. We give a brief overview of

HydraVM below, and detail its two operation modes in Section 3.3 and Section 3.4, respectively.

During normal operation of a primary VM, HydraVM operates in the protection mode. Hy-

draVM maintains a backup copy of the primary VM state in a shared storage. As the primary

executes, the backup state is periodically synchronized with the changing state in the VM, such that

in the event of a primary host failure, the VM can be recovered based on its backup state without

losing much of the completed work. Like existing approaches [24, 39, 44, 47, 93], HydraVM repli-

cates checkpoints of the primary VM to update the backup VM state. Unlike previous systems,

HydraVM consolidates and stores the checkpoints in storage, without making any backup memory

reservation.

Upon detection of a failure of the primary host, HydraVM switches to the recovery mode and

responds to the failure. A restoration host with available memory must be selected, either from the

stand-by hosts, or from the surviving hosts. HydraVM then initiates a fail-over to restore the failed

primary VM in the restoration host. HydraVM performs a “slim” VM restore, which loads only

28
DISTRIBUTION A: Distribution approved for public release.

a small amount of critical VM state from the shared storage to instantiate and restore the VM. It

activates the restored VM immediately to take over execution from the most recent runtime state

recorded before the failure. As the VM executes, the state not loaded during fail-over are supplied

on-demand.

We implemented the protection and recovery mechanisms of HydraVM based on Xen (version

3.3.2) as management commands to be invoked via the xm interface. Currently, HydraVM does

not implement custom-built mechanisms to detect host failures and select restoration hosts, and

assumes to cooperate with and be informed by existing failure detectors (e.g., [83]) and cluster

resource managers (e.g., [19, 100]) of these decisions.

3.2.3 Advantages and Limitations

The storage-based HydraVM approach offers several advantages. First, by using inexpensive

storage to maintain the VM state necessary for fail-over in place of expensive RAM, the hardware

costs of providing HA support are reduced. Second, the memory reserved by inactive backup VMs

are freed up for better usage. They may be added to active VMs for performance enhancements,

or used to create new VMs and consolidate existing ones more effectively. Third, since HydraVM

maintains the fail-over states in a shared storage instead of dedicated backup machines, in the event

of a failure, the affected VMs may be recovered in any physical host that has access to the storage.

This allows fail-over to any host that currently has sufficient spare memory and other resources. This

ability is critical given the highly variable utilization of hosts in a virtualized environment. Finally,

using HydraVM, a relatively small number of spare hosts needs to be provisioned in anticipation of

failures, instead of a large number of hosts passively synchronized with the protected VMs, since a

single host can now back up or protect many more VMs, as long as they do not all fail together.

However, maintaining fail-over state in storage also causes limitations for HydraVM, mainly

because persistent storage devices are orders of magnitudes slower than RAM. When maintaining

backup VMs in memory, the primary and backup can be synchronized quickly and frequently, or

kept in lock-step, even though significant overheads are incurred [32, 39, 44]. In HydraVM, each

synchronization of the primary and backup VM state takes much longer to finish on storage devices.

HydraVM thus has to replicate VM checkpoints and update backup VM state much less frequently

than approaches using in-memory backup VMs.

Previous approaches use in-memory backup VMs and frequent checkpointing mainly to enable

network buffering. Network buffering is the act of withholding outgoing network packets of the

primary VM until the checkpoint that captures the state from which the packets are generated is fully

replicated and acknowledged by the backup. Frequent checkpointing is necessary, since network

outputs must be released frequently after each checkpoint to not incur unacceptably long delays.

However, even when checkpoints are taken and replicated as frequently as 10–40 times per second,

latency-sensitive applications still suffer from significant performance degradations [39, 44].

Network buffering ensures that any exposed state is recoverable if a failure occurs, and is needed

when the protected VM interacts with external clients and transparent failure recovery is required.

However, for most client-facing applications, any storage-based HA approach does not replicate

checkpoints frequently enough to sustain reasonable application performance with network buffer-

ing. HydraVM currently does not buffer network outputs for protected VMs, and does not provide

transparent recovery for server applications constantly interacting with external clients. Without co-

operation from the end-user or programmer during recovery, server applications should be protected

by in-memory backup VMs with network buffering, even though at larger application and resource

overheads.

HydraVM makes this design tradeoff to maintain the state needed by VM fail-over in storage,

29
DISTRIBUTION A: Distribution approved for public release.

Primary host

Management VM

hacp

Protected

(primary) VM

harcv send checkpoints

VM disk storage

Virtual disk images

Restoration host

Management VM

hart
Restored VM

odpf

Shared storage system
accessible to all VM hosts

Fail-over image storage

VM fail-over image

consolidate checkpoints

fetch memory contents

supply memory contents

selected upon fail-over

VM hosts

Figure 3.1: The HydraVM system.

instead of RAM, and provide a cost-effective HA alternative for application scenarios in which

frequent checkpointing and network buffering are not needed. HydraVM protects long-running

computing jobs which can be prohibitively expensive to repeat after a failure occurs, such as scien-

tific computation and simulation, at a reduced resource cost and without requiring any modification

to the application. In a cluster, HydraVM can work with distributed snapshot algorithms [46] to

provide coordinated protection and recovery for VMs running distributed and multi-tiered appli-

cations. Alternatively, HydraVM can work with synchronized clocks to checkpoint and protect

multiple VMs in a cluster concurrently.

3.3 VM Protection

During normal execution of a primary VM, HydraVM maintains a backup copy of the VM state

in a shared storage, and updates the backup state continuously as the primary runs.

There are two main approaches to primary-backup state synchronization. Log-and-replay records

all instructions and non-deterministic events executed by the primary VM, and replays them deter-

ministically to generate an identical state in the backup [20, 32]. This approach is not suitable

for HydraVM, since by maintaining the backup state in a storage, we essentially page out the en-

tire backup VM, and to replay primary VM execution would require frequently bringing pages

of the backup VM back in. Therefore, HydraVM uses the other approach, checkpoint replica-

tion [24, 39, 44, 47, 93], which captures the entire state of the primary VM in checkpoints and

replicates them to the backup.

3.3.1 Checkpointing VM CPU and Memory State

Figure 3.1 illustrates the architecture of HydraVM. For each primary VM, HydraVM runs a

checkpointing daemon, called hacp, to enforce the protection of the VM. hacp first creates a fail-

30
DISTRIBUTION A: Distribution approved for public release.

over image for the VM by taking a full VM checkpoint and replicating it to the fail-over image

storage; this full checkpoint is taken only once at the beginning of the protection. The fail-over

image contains the backup state of the VM, based on which the VM can be restored in case a

failure occurs. Specifically, a fail-over image contains (1) the configuration of the VM describing

the VM’s allocated resources, virtual devices, pages shared with the hypervisor, and so on, (2) the

VM’s virtual CPU state, and (3) all memory pages of the VM, laid out sequentially in the order they

appear in the VM’s memory space. In our implementation, (1) and (2) contain only 60 KB of data,

so the size of the fail-over image is just slightly larger than the memory size of the VM.

As the VM continues executing, hacp takes incremental checkpoints periodically. Each incre-

mental checkpoint captures the changes of the VM’s CPU and memory state since the last check-

point taken. We implemented hacp by modifying the stop-and-copy stage of Xen’s live migration

support [38]. hacp uses Xen’s shadow page tables to find the memory pages modified in each

checkpointing interval, by putting the execution of a primary VM in log-dirty mode. In this mode

of operation, Xen maintains a private (shadow) copy of the VM’s page tables, in which all pages of

the VM are marked read-only. A write to a page generates a fault and traps into Xen, so Xen can

record the page in a dirty bitmap.

At the end of each checkpointing interval, hacp pauses the VM momentarily to capture a consis-

tent set of changed VM state while the VM is not executing. It finds the dirty memory pages based

on the dirty bitmap, and copies their contents along with the CPU state of the VM to a buffer. It

then resets the dirty bitmap to record for the next checkpoint, and un-pauses the VM. While the VM

continues executing, hacp sends the buffer containing the checkpointed VM state to the fail-over

image storage.

HydraVM replicates each checkpoint asynchronously, overlapping checkpoint replication with

VM execution as existing HA systems do [39, 44, 47]. Unlike previous systems, which store check-

points in server memory, HydraVM writes checkpoints to storage. A checkpoint may be stored as

an individual patch file, or merged with the fail-over image in the shared storage. The first approach

may store the checkpoint faster with sequential I/Os, but checkpoint patches can consume storage

space very rapidly as the VM continues running. In our experiments, we observed that a workload

can dirty 10–40MB of memory per second. Using these results as an example, protection of a VM

can generate 36–144GB of checkpoint data per hour, and potentially use up an entire disk per day.

The checkpoint patches need to be consolidated to reclaim storage space and to generate a

recent, consistent VM state for fail-over. However, merging checkpoint patches is very time-

consuming. Each patch file must be read from disk, and the dirty page contents written to different

locations in the fail-over image according to the page indexes. Our experience suggests that merging

only 80 checkpoints or so, each containing about 30MB of data, takes almost 4 minutes to complete.

For a workload that dirties 30MB of memory per second, to merge all its checkpoints when restora-

tion of the VM is required would result in an unacceptably long fail-over time. Even if a daemon

runs to merge a few checkpoints periodically, the I/Os incurred can interfere with the storage of new

incoming checkpoints, and offset the speed benefit of writing checkpoints sequentially as patches.

Therefore, HydraVM takes the other approach, to consolidate an incoming checkpoint into the

fail-over image, and keep the image updated with the latest checkpointed VM state, ready for use

by VM restoration. For each primary VM, HydraVM runs a checkpoint receiver daemon, harcv, in

the fail-over image storage. harcv receives a checkpoint in its entirety, and applies all state changes

included in the checkpoint to the fail-over image. Note that harcv does not write to the fail-over

image while receiving the checkpoint, nor does hacp update the fail-over image directly by sending

checkpointed VM state in network file or block I/Os. Otherwise, the fail-over image may become

inconsistent and unusable for recovery, if the primary host fails in the middle of transmitting a

checkpoint.

31
DISTRIBUTION A: Distribution approved for public release.

harcv commits all checkpoint writes to the storage, releases the buffer cache used, and sends

an ACK back to hacp, confirming the successful completion of the checkpoint. After receiving the

ACK, hacp waits until the current checkpointing interval ends, and takes a checkpoint again. If a

checkpoint takes a longer time than the configured checkpointing interval to replicate, hacp waits

until the on-going replication finishes and an ACK is received, and then starts the next checkpoint.

This way, checkpoints are not taken faster than they can be stored and made useful (in the fail-over

image).

3.3.2 Checkpointing VM Disk State

To correctly restore the primary VM in the event of a failure, a VM disk state that is consistent

with its CPU and memory state in the fail-over image is required. The focus of HydraVM is to keep

track of and recover VM runtime state in a memory-efficient manner, and we currently use a simple

technique to meet the requirement of checkpointing virtual disk state. Our system hosts VM disks

under LVM [12], and uses the snapshot functionality of LVM to capture the disk state at the time of

an incremental checkpoint.

LVM snapshots can be taken very quickly and at a low overhead. It is implemented by perform-

ing copy-on-write at block level. Note that HydraVM is not designed for, nor confined to, the use

of LVM. File system snapshots, such as those supported in ZFS [85], BTRFS [84], Ext3cow [76],

to name a few, can also be used. It is most ideal to integrate HydraVM with a storage infrastructure

that is designed to support efficient creation of virtual disk snapshots; one good example of such a

storage system is Parallax [67].

3.4 VM Recovery

For prior approaches that use in-memory backup VMs, when a failure occurs, all VM states

needed for fail-over are in place in the memory of the backup VM. Ideally, fail-over can be accom-

plished simply by switching on backup VM execution. However, quick restoration of a failed VM is

challenging in HydraVM, since the fail-over image is kept on a networked stable storage, and must

be loaded into the memory of the selected restoration host before the VM can resume execution

from the last checkpointed state.

Loading the entire fail-over image of a VM can take an unacceptably long time. It takes 20–

40 seconds to load a single fail-over image of 1–2GB from a hard drive and send it over a GbE

link to the restoration host in our experiments, and it will take even longer to load a larger fail-

over image or multiple images at a time. Loading large amounts of VM state from the fail-over

image can also make VM restoration a highly variable procedure, especially when restoring multiple

VMs concurrently: even a small VM which may individually restore acceptably can require an

unpredictably long fail-over time, due to the aggregate network and storage traffic incurred. It is

therefore important to reduce the time and traffic incurred for VM fail-over.

3.4.1 Slim VM Restore

HydraVM performs a “slim” restore for a failed VM to quickly instantiate the VM in the restora-

tion host based on a minimal set of information in the fail-over image. The execution of the VM

is activated immediately after the instantiation, without waiting for the fail-over image to be fully

loaded.

The restoration agent hart is invoked in the restoration host, and is responsible for performing

the fail-over. hart first loads the VM configuration from the fail-over image, which describes the

32
DISTRIBUTION A: Distribution approved for public release.

allocated resources and virtual devices of the failed VM. Based on this information, hart reserves

sufficient memory in the host, constructs a VM container, establishes communication channels be-

tween the VM container and the hypervisor, and creates the virtual devices used by the VM. We

recycled Xen’s code for VM restore to implement this stage of slim restore.

Although sufficient memory is reserved in the restoration host when hart creates the VM con-

tainer, physical page frames that constitute the memory area are not yet designated when the mem-

ory reservation is made. hart loads the VM page tables from the fail-over image. It walks through

the page table entries, allocates and assigns physical page frames in the restoration host to VM

pages. This establishes the mappings between guest page frame numbers (GPFNs), which are the

page indexes in the VM’s private view of its contiguous memory space, and machine frame num-

bers (MFNs), which are the host-dependent physical frame numbers in the restoration host. The

VM page tables are updated to contain correct references to the allocated memory of the VM in the

restoration host.

Subsequently, hart loads several VM data structures that are critical to restoring VM execution,

for example, the running virtual CPU, wall-clock time, and a few pages shared with the hypervisor.

Finally, hart loads the virtual CPU state. With the above information loaded from the fail-over

image storage and a consistent virtual disk state in the VM disk storage, hart restores the VM,

reconnects the virtual devices to the restored VM, and switches on VM execution.

3.4.2 Fetching VM Pages On-demand

Immediately after the restored VM begins to execute, its memory space is partially populated.

Only the small set of VM pages loaded by slim restore is placed in the memory space of the restored

VM and is ready for use; no data pages of the VM are loaded during fail-over.

As the restored VM executes and accesses its memory, valid contents must be supplied for the

execution to proceed. In HydraVM, memory references made by the restored VM are intercepted by

the hypervisor. If a page accessed is not yet present in the memory space of the VM, the hypervisor

requests on the VM’s behalf that the page content be fetched from the fail-over image.

VM memory references may be intercepted in different ways. One approach is to mark all

resident pages in the VM as “not-present” in their page table entries when loading VM page tables

during slim restore, so that when the VM accesses a page, it generates a fault and traps into the

hypervisor. However, this approach requires significant modification in the guest kernel to work.

Our implementation uses Xen’s support of shadow page tables instead. Before finishing slim restore,

hart puts the operation of the restored VM in shadow mode. The shadow copy of the VM page

tables are initially empty, and therefore, the first access to each VM page traps into Xen upon a

fault; the shadow entries are filled in as Xen handles these faults during VM execution.

When the restored VM accesses a page that is not yet loaded from the fail-over image, its

execution is temporarily paused, and the content of the page is requested. A page fetching daemon,

called odpf, runs in the restoration host to service such a request. Based on the GPFN of the

requested page, odpf loads the page content from the fail-over image storage into the memory space

of the restored VM. Once the page is brought in, the VM is un-paused and continues executing.

By requesting memory contents on-demand, no unnecessary pages are transferred for the re-

stored VM, and the network and storage traffic incurred at the beginning stage of VM recovery

is greatly reduced. The remainder VM pages can be pushed from the fail-over image storage at

a later time to fully populate the memory space of the restored VM when the system is relatively

lighter loaded. Although the execution of the restored VM is inevitably interrupted by page fetches,

we use page pre-fetching to reduce the frequency of such interruptions, as we will next describe.

Interruption to VM execution becomes minimal once the working set of the VM is brought into

33
DISTRIBUTION A: Distribution approved for public release.

memory.

3.4.3 Pre-fetching Nearby VM Pages

Memory references often exhibit spatial locality. When servicing a page fetch request, it may

be beneficial to also fetch pages that are adjacent to the one requested, in anticipation of the VM’s

future needs. However, two factors must be considered for page pre-fetching. First, pre-fetching

can incur additional storage I/O overhead. Second, getting more pages than the one requested can

increase the request service time, keeping the VM paused and waiting for the requested page longer.

In HydraVM, pre-fetching adjacent pages means reading additional blocks sequentially in a

fetch I/O, or issuing additional sequential I/Os. Since sequential I/Os can be performed efficiently

on storage devices, page pre-fetching will likely incur more benefit than overhead. In our proto-

type implementation, odpf accesses the fail-over image over NFS [36], to take advantage of NFS’

asynchronous read-ahead buffering for page pre-fetching. As greater memory reference locality

is detected (upon detection of greater sequentiality in fetch I/Os), NFS pre-fetches more pages in

the proximity of the requested pages asynchronously, without blocking the operation of odpf or

increasing request service times. Pre-fetched pages are brought into the page cache memory of the

restoration host in parallel with, but not on the critical path of, the page fetch requests issued by the

restored VM. When the VM accesses a pre-fetched page, the content becomes available instantly

with minimal interruption to VM execution.

3.5 Evaluation

We evaluate HydraVM addressing the following questions:

• What type of VM protection does HydraVM provide without making any backup memory

reservation?

• How much overhead is incurred for protection with HydraVM?

• When a host failure is detected, how quickly does HydraVM bring a failed VM back up?

• How does a fail-over performed by HydraVM affect VM operation?

3.5.1 Testbed and Workloads

We ran all experiments on a testbed consisting of four HP Proliant BL465c blades in the same

LAN. The four blades are used as the primary host, restoration host, VM disk storage, and fail-over

image storage in HydraVM, respectively. Each blade is equipped with two dual-core AMD Opteron

2.2GHz processors, 4–8GB RAM, two Gigabit Ethernet cards, and two 146GB SAS 10K rpm hard

disks.

The VM under test is configured with 1G memory, one virtual CPU and one virtual NIC. Its vir-

tual disks are hosted in the VM disk storage under LVM, and mounted in the primary and restoration

hosts via NFS. The VM under test and HydraVM use separate network interfaces: all VM traffic,

including its disk traffic, go through one NIC of the hosts, while the VM checkpoint and restoration

traffic incurred by HydraVM go through the other NIC.

We evaluate HydraVM on two types of fail-over image storage, a hard disk drive (HDD) and

a SSD; we replaced one disk in the blade used as the fail-over image storage with an Intel 80GB

X25M Mainstream SATA II MLC SSD. HydraVM writes to and reads from the VM fail-over image

34
DISTRIBUTION A: Distribution approved for public release.

HPC-C

Configured checkpointing interval (sec) 1 2 5

Fail-over image storage HDD SSD HDD SSD HDD SSD

Actual checkpointing interval (sec) 1.0 1.0 2.0 2.0 5.0 5.0

Checkpoint size (MB) 10.2 10.2 12.7 12.6 14.3 14.4

Checkpoint sending time (ms) 93 93 117 116 131 133

Checkpoint storage time (ms) 724 476 808 572 987 665

Checkpoint storage throughput (MB/s) 14.1 21.4 15.7 22.1 14.4 21.6

FFT

Configured checkpointing interval (sec) 1 2 5

Fail-over image storage HDD SSD HDD SSD HDD SSD

Actual checkpointing interval (sec) 1.7 1.6 2.2 2.2 5.0 5.0

Checkpoint size (MB) 38.7 38.7 40.8 40.8 50.8 51.0

Checkpoint sending time (ms) 349 349 368 368 458 459

Checkpoint storage time (ms) 1335 1274 1442 1359 1939 1711

Checkpoint storage throughput (MB/s) 29.0 30.4 28.3 30.0 26.2 29.8

FFmpeg

Configured checkpointing interval (sec) 1 2 5

Fail-over image storage HDD SSD HDD SSD HDD SSD

Actual checkpointing interval (sec) 1.3 1.0 2.0 2.0 5.0 5.0

Checkpoint size (MB) 11.0 10.3 13.1 12.9 20.5 20.8

Checkpoint sending time (ms) 102 95 121 120 189 191

Checkpoint storage time (ms) 1108 607 1123 716 1488 1088

Checkpoint storage throughput (MB/s) 9.9 17.0 11.7 18.1 13.8 19.1

Table 3.1: The size of the incremental checkpoints taken and the time required to send and store each

checkpoint to the fail-over image storage during the execution of the workloads.

at the granularity of an OS page in its protection and recovery modes, respectively. Running exper-

iments with both HDD and SSD helps us understand how these small and largely random I/Os are

performed on different storage media types.1

As discussed in Section 3.2.3, HydraVM is suitable for protecting long-running computation

jobs and cluster applications. We used three workloads of these types in our evaluation. HPC-C [8]

is a suite of 7 benchmarks essential for long-running scientific jobs. These benchmarks stress float-

ing point computation and the memory subsystem. All of them are executed in our experiments.

SPECjvm2008 [16] is a benchmark suite for evaluating the performance of a Java runtime envi-

ronment. We executed the FFT benchmark of this suite for 10 minutes in each experimental run.2

FFmpeg [3] is an open-source media transcoding tool. We used it to convert a 124MB MP4 file to

AVI format in our experiments.

Unless otherwise mentioned, all measurements reported are the averages of at least four runs of

each experiment. All bar graphs show 90% confidence intervals. The VM under test is rebooted

between each experimental run.

35
DISTRIBUTION A: Distribution approved for public release.

3.5.2 Storage-based VM Protection

We ran the three workloads in a VM, and configured hacp to take checkpoints of the VM

periodically throughout the execution of the workloads. Table 3.1 summarizes the average size

of each checkpoint taken, the time required to replicate a checkpoint over the network, the time

required to store a checkpoint in the fail-over image and the storage throughput achieved, under

different checkpointing frequencies and storage types.

The checkpoint storage throughput achieved is dependent on both the workload in the check-

pointed VM and the storage type. In our experiments, checkpoints are written to a HDD at a rate of

10–29MB/s. In the three workloads, higher throughputs (26–29MB/s) are observed for the storage

of FFT checkpoints. While FFT touches more memory pages in each checkpointing interval, result-

ing in larger checkpoints than the other two workloads, the I/Os incurred for storing its checkpoints

have a higher degree of sequentiality and are carried out much more efficiently. In our experiments,

HDD even achieves a performance comparable to SSD when storing FFT checkpoints.

However, in most cases, SSD still handles checkpoint storage more efficiently. Our results show

that for HPC-C and FFmpeg, checkpoints are stored faster on SSD by 7MB/s than HDD. While SSD

generally incurs much lower access latencies without any mechanical parts, its write performance

can be affected by the need to erase blocks before reusing them, and is also workload-dependent.

In our experiments, the checkpoint storage throughputs achieved on SSD range from 17MB/s to

30MB/s. Write performance tends to degrade with increasing randomness in the I/Os, due to the

impact of internal fragmentation and increased overhead of garbage collecting clean blocks [68].

With these storage throughputs, all three workloads have their checkpoints committed to storage

within each checkpointing interval when checkpointed every 5 seconds, whether using HDD or

SSD in the fail-over image storage. When checkpoints are taken at shorter intervals, it becomes

more challenging to finish writing each checkpoint before the interval ends. For example, when

FFmpeg is configured to be checkpointed every second, each of its checkpoints takes an average of

0.1 second to be transmitted over the network, and another 1.1 seconds to be written on a HDD. The

total time taken to replicate and commit a FFmpeg checkpoint to the fail-over image storage thus

exceeds the 1-second configured interval.

hacp does not start the next checkpoint until the on-going one is committed to storage. As a re-

sult, many FFmpeg checkpoints are taken after the configured interval has passed. The delays result

in discrepancies between the configured checkpointing interval (1 second) and the actual elapsed

time between consecutive checkpoints (1.3 seconds on average). If the fail-over image storage uses

a SSD, it takes only 0.6 second on average to store each checkpoint, and the configured checkpoint-

ing frequency of one checkpoint per second can actually be achieved for FFmpeg. However, SSD

does not always meet the I/O demand of achieving the configured checkpointing frequency. In our

experiments, when FFT is configured to be checkpointed every 1 and 2 seconds, checkpoints are

delayed and actually taken every 1.6 and 2.2 seconds, even when storing on a SSD, since these

checkpoints each contain a large number of dirty pages to be stored.

3.5.3 Overheads of VM Protection

HydraVM protection affects the operation of a protected VM, mainly because the VM must

be paused periodically for taking incremental checkpoints. Figure 3.2 shows the VM pause time

incurred for each checkpoint. The pause times are in the order of tens of milliseconds, and we

1In all experiments, the virtual disks of the VM under test were hosted on a hard disk in the VM disk storage.
2Specifically, we used scimark.fft.large, which computes Fast Fourier Transform and is designed to stress the memory

subsystem by using a dataset large enough to not fit within a standard L2 cache.

36
DISTRIBUTION A: Distribution approved for public release.

 0

 10

 20

 30

 40

 50

 60

 70

HPC−C FFT FFmpeg

P
au

se
 ti

m
e

(m
s)

(1 sec, HDD)
(1 sec, SSD)
(2 sec, HDD)
(2 sec, SSD)
(5 sec, HDD)
(5 sec, SSD)

Figure 3.2: The VM pause time incurred for taking an incremental checkpoint. The legend is given

in (configured checkpointing interval, fail-over image storage type).

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 5

R
un

tim
e

(s
ec

)

Configured Checkpointing Interval (sec)

(a) HPC-C

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5

O
pe

ra
tio

ns
 /

m
in

Configured Checkpointing Interval (sec)

HDD
SSD

(b) FFT

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 5

R
un

tim
e

(s
ec

)

Configured Checkpointing Interval (sec)

(c) FFmpeg

Figure 3.3: The performance of the workloads when checkpointed periodically. The runtime of

HPC-C without checkpointing (baseline) is 344 seconds. The baseline throughput of

FFT is 6.1 ops/min. The baseline runtime of FFmpeg is 289.5 seconds.

observed that the time taken to copy dirty pages to a buffer for transmission is the main part. There-

fore, pause time increases with the number of dirty pages in a checkpoint. For each workload, longer

pause times are incurred at larger checkpointing intervals. In the three workloads, FFT incurs the

longest pause times, since it has larger checkpoints than the other two workloads.

Figure 3.3 shows the performance of the workloads running in a protected VM periodically

paused and checkpointed throughout the execution of the workloads. Our results show that Hy-

draVM provides VM protection with a moderate impact on application performance. When check-

pointed every 5, 2, and 1 seconds, the execution of HPC-C takes 1–6% longer time to finish com-

paring to the baseline execution, for which no checkpoints are taken and no protection is provided.

As for FFT, the throughput achieved (operations completed per minute) drops by 7–22% when

protected. FFmpeg takes 12–16% longer time to finish transcoding the media file under protection.

Although when checkpointed at larger intervals, workload execution is paused for a longer

time in each interval, pauses happen less frequently, and hence the overall impact on workload

performance is smaller. Workload overhead increases as checkpointing interval becomes shorter.

Taking checkpoints at shorter intervals provides a higher level of VM protection, since if a failure

occurs, the VM rolls back to a more recent point in time and loses a smaller amount of completed

work. However, this benefit is gained at the cost of a larger loss of application performance during

normal operation, since VM execution is interrupted more frequently.

37
DISTRIBUTION A: Distribution approved for public release.

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

HPC−C FFT FFmpeg

B
rin

g−
up

 ti
m

e
(s

ec
) HDD

SSD

Figure 3.4: The time required to bring up a failed VM from a HDD- and a SSD-based fail-over

image storage.

Workload HPC-C FFT FFmpeg

Fail-over image storage HDD SSD HDD SSD HDD SSD

Total data loaded (MB) 4.3 4.3 3.9 3.9 3.3 3.3

Number of page table pages loaded 1083 1083 975 975 823 825

Time to load all page tables (ms) 1342 635 1391 505 996 389

Table 3.2: Amount of data loaded and the loading time incurred during fail-over (slim VM restore).

HydraVM provides VM protection with efficient resource usages. hacp and harcv, the dae-

mons responsible for checkpoint replication, use less than 10% of the CPUs in the protected host

and fail-over image storage, respectively. The daemons each need a transmission buffer to send

and receive checkpoints one-by-one. In our experiments, each daemon uses no more than 80MB

of memory, which is enough for transmitting the largest checkpoint of the workloads we use. The

memory consumption of HydraVM is significantly less than that required by approaches maintain-

ing in-memory backup VMs, which, in this case, would use 1G RAM for the backup VM in addition

to the transmission buffers.

3.5.4 Restoration of a Failed VM

We now evaluate how quickly HydraVM brings a failed VM back up. We ran the three work-

loads in a VM in the protection mode of HydraVM; hacp was configured to take checkpoints of the

VM every second. After executing about 50% of each workload and finishing the last checkpoint

in this time period, we forced the VM to stop, to emulate the occurrence of a failure. HydraVM

then switched to the recovery mode, and hart was invoked to restore the VM based on its fail-over

image and a consistent disk state in the VM disk storage.

All workloads resumed execution correctly in the restored VM after a brief pause, during which

HydraVM performs slim restore and brings the VM back up. As shown in Figure 3.4, HydraVM

restores a VM from a fail-over image stored on a HDD in less than 2.2 seconds. If the fail-over

image is on a SSD, the VM is restored even faster, using less than 1.5 seconds. In all experiments,

we made sure that no data from the fail-over image is cached in memory prior to VM restoration.

All data loaded during slim restore are loaded from the storage devices, so that we can include I/O

time in our measurements.

HydraVM brings up a failed VM quickly by loading a minimal amount of information from the

38
DISTRIBUTION A: Distribution approved for public release.

 0

 50

 100

 150

 200

 250

 300

 350

 400

HDD SSD

R
un

tim
e

(s
ec

)

(a) HPC-C

 0

 1

 2

 3

 4

 5

 6

 7

HDD SSD

O
pe

ra
tio

ns
 /

m
in

No protection
Protected
Restored

(b) FFT

 0

 50

 100

 150

 200

 250

 300

 350

 400

HDD SSD

R
un

tim
e

(s
ec

)

(c) FFmpeg

Figure 3.5: The performance of the workloads under different conditions: no protection and not

checkpointed, protected and configured to be checkpointed every second, and restored

from a failure that occurs halfway through the workload executions.

potentially gigantic fail-over image in the shared storage. In our experiments, less than 5MB of data

out of the 1G fail-over image is loaded for slim restore, as shown in Table 3.2. The majority of the

data loaded are the VM page tables. The time to load and restore all page tables constitutes 30–60%

of the bring-up times.

We further break down the bring-up time into three stages, in which (1) sufficient memory is

reserved in the restoration host and a container for the VM is constructed, (2) the page tables, virtual

CPU state, and other important data structures of the VM are loaded from the fail-over image and

processed to initialize the VM, and (3) the virtual devices of the VM are re-connected and the VM

is ready to begin execution. Our results show that on average, stage 1 and stage 3 take 0.4 and 0.2

second to finish, respectively; these times are independent of the types of device used in the fail-over

image storage. The rest of the bring-up time is spent in stage 2.

This breakdown helps us reason about the fail-over behavior of HA approaches that use in-

memory backup VMs. These approaches perform the tasks in stage 1 when setting up a backup VM

in a dedicated host at the beginning of the protection of a primary VM. As the primary VM executes,

the memory state of the backup, including the data structures mentioned in stage 2, are repeatedly

updated to synchronize with that of the primary. When the primary VM fails, presumably, only

the tasks in stage 3 are left to be completed during fail-over. Using in-memory backup VMs thus

enables very fast fail-over, but at the cost of making unproductive memory reservation throughout

normal VM operations.

3.5.5 Operation of a Restored VM

In the experiments described in Section 3.5.4, after the VM was restored from the emulated

failure, the last 50% of the workloads executed while odpf supplying the memory contents of the

VM on-demand. All three workloads completed execution correctly.

In HydraVM, the impact of a failure includes not only the extra time required to bring the

failed VM back up, but also the slowdown of VM execution after restoration due to demand paging.

To understand this impact, in Figure 3.5, we compare the performance of the workloads running

under three conditions: (C1) no protection and not checkpointed, (C2) protected and configured to

be checkpointed every second, and (C3) restored from a failure that occurs halfway through the

workload executions. C1 and C2 are failure-free conditions. In C3, the VM is configured to be

checkpointed every second (same protection as in C2) before failure.

39
DISTRIBUTION A: Distribution approved for public release.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300 350

N
um

be
r

of
 p

ag
es

 fe
tc

he
d

Workload Runtime (sec)

HPC-C, HDD
HPC-C, SSD

FFT, HDD
FFT, SSD

FFmpeg, HDD
FFmpeg, SSD

Figure 3.6: Number of VM pages fetched to execute the last 50% of the workloads in a restored

VM.

For each workload, comparing the performances measured with and without protection (condi-

tions C1 vs. C2) tells us the cost of protection, while comparing the performances measured with

and without a failure (conditions C2 vs. C3) reveals the total cost of recovering from a failure in

HydraVM. Overall, failure recovery does not incur an undue overhead. In some cases, the workload

performance with a failure (and failure recovery) is better than that without a failure (simply under

protection), since we did not re-engage protection after the VM is restored in these experiments. We

chose to not re-engage protection, so that for HPC-C and FFmpeg, we can compare the execution

time of the last 50% of the workloads running with and without demand paging (conditions C1

vs. C3), to understand the overhead incurred by the technique.

Recovering from a failure halfway through the execution (condition C3) using a fail-over image

stored on a HDD, HPC-C executes for a total of 360 seconds, 4 seconds longer than the total run-

time measured under protection without a failure (condition C2). Failure recovery is accomplished

at a relatively low cost for HPC-C, mainly because the workload fetches a small amount of memory

data on-demand to finish execution. As shown in Figure 3.6, during the second half of workload ex-

ecution, only 44MB of data are fetched from the fail-over image storage. These fetches concentrate

in the first few seconds of the restored execution: 88% of the data are fetched in 6 seconds from a

HDD, and more quickly, in 4 seconds, from a SSD. Comparing the runtime of the second half of

the workload under conditions C1 and C3 (with and without demand fetching) yields a consistent

observation that demand paging incurs a relatively small overhead for HPC-C; fetching from a HDD

and a SSD lengthens the runtime by an additional 7 and 6 seconds, respectively.

The costs of failure recovery are larger for FFmpeg. Without a failure, the workload runs for

335 and 337 seconds under protection, using a HDD and a SSD in the fail-over image storage,

respectively. When a failure occurs in the middle of the execution, the workload spends 15 more

seconds to finish execution, if recovering from a fail-over image on a HDD. The cost of recovery

is smaller when a SSD is used in the fail-over image storage; workload runtime is lengthened by 6

seconds.

These recovery costs result from the relatively large overheads of demand paging incurred by

FFmpeg. After resuming in the restoration host, FFmpeg fetches a large amount of memory data,

about 460MB, to finish execution. The workload also has a staged use of VM memory, as can be

observed from Figure 3.6. It accesses the working set area-by-area, and fetches new memory pages

at a slower pace than the other two workloads. Page fetching thus affects the execution of FFmpeg

for a longer period of time, leading to increased overheads.

40
DISTRIBUTION A: Distribution approved for public release.

 8.85e+07

 8.9e+07

 8.95e+07

 9e+07

 9.05e+07

 9.1e+07

 0 20 40 60 80 100 120 140 160 180 200

D
is

k
se

ct
or

 n
um

be
r

Workload Runtime (sec)

Page fetching I/O

Figure 3.7: The storage I/Os incurred to demand fetch VM pages for FFmpeg after it resumes exe-

cution in a restored VM. Each dot represents an I/O, and the size of the dot represents

the size of the I/O.

To gain a further understanding of the storage I/Os incurred for demand paging, we ran blktrace [33]

in the fail-over image storage after the failed VM resumes execution. Using FFmpeg as an example,

Figure 3.7 plots the I/O activities that actually occur on the storage device (a HDD in this case) to

fetch page contents for the restored VM. Each dot represents an I/O request recorded by blktrace,

and the size of the dot represents the size of the request. We found that even though almost 120,000

4K pages are fetched during the execution of FFmpeg, only 9,000 I/O requests are sent to the de-

vice. The I/O pattern shows substantial spatial locality, and many of the I/Os fetched 512 disk

sectors (256KB of data, 64 4K pages) at a time, as shown by the large dots in the figure. These

observations suggest that the memory references made by the workload have good locality, and that

NFS read-ahead buffering, exploited by odpf, is effective in pre-fetching near-by VM pages.

3.6 Discussions on Alternative Storage Architectures

We have demonstrated the feasibility of the HydraVM approach via a prototype implementation

and its evaluation in a 4-node testbed. In this section, we discuss how HydraVM may take advantage

of large, parallel storage systems to provide HA support for a large number of VMs.

Flat Datacenter Storage (FDS) [74] is an example of large, parallel storage system that may

benefit HydraVM. FDS provides a shared, centralized permanent storage based on the disks or flash

in hundreds or thousands of commodity storage servers in a cluster. In FDS, data are logically stored

in blobs and accessed in tracts; FDS uses 8MB tracts to amortize the cost of disk seeks and achieve

comparable performances for sequential and random accesses. FDS strives to distribute the tracts

of a blob uniformly across a vast array of disks. When an FDS client accesses the storage, hundreds

or thousands of disks may read or write data for the client in parallel, and the client achieves the

combined throughput of all participating disks.

RAMCloud [75] is also a storage system characterized by scale and data parallelism. Different

from FDS, RAMCloud provides DRAM storage by unifying the DRAM of hundreds or thousands

of storage servers, and uses disks or flash to store replicas of the data in DRAM. It exploits scale

and data parallelism not to serve client requests (those are satisfied quickly by DRAM accesses),

but to speed up the recovery of a failed storage server. It strives to replicate the DRAM data of a

server, in units of 8MB log segments, uniformly across thousands of backup disks. When the server

41
DISTRIBUTION A: Distribution approved for public release.

fails, the DRAM data can be recovered by thousands of disks reading their shares of the server’s

data replicas in parallel.

Since HydraVM utilizes permanent storage to eliminate backup memory reservation, below,

we primarily use FDS as an example as we discuss how scale and data parallelism may benefit

HydraVM; we will discuss RAMCloud’s techniques where appropriate.

Consider HydraVM using FDS as the shared storage and storing each fail-over image as a blob.

For a VM with 1GB memory, its fail-over image consists of 128 tracts, and ideally, each tract is

stored on a different disk. During protection of the VM, HydraVM consolidates checkpoints into

the fail-over image with a maximum of 128 disks working at the same time, each updating its

share (a tract) of the fail-over image. In theory, even if all 1GB memory of the VM is dirtied and

checkpointed, the checkpoint can be stored as fast as an 8MB tract can be written.

This example illustrates how FDS’s scale and data parallelism may help HydraVM overcome

the intrinsic slowness of permanent storage devices in the protection mode, but it is simplified in

two aspects. First, in reality, deployment of hundreds of disks is expected to support HA for a

large number of VMs for cost-effectiveness; checkpoints of multiple VMs must contend for disk

bandwidth for their storage. Second, HydraVM must guarantee atomicity for the storage of each

checkpoint across multiple disks and storage servers. We next discuss the two aspects in more detail.

The developers of FDS executed up to 180 concurrent, networked clients accessing an FDS

cluster of 1,033 disks continuously, and observed a peak aggregate storage throughput of 67 GB/s,

roughly 380 MB/s/client; each client has a 10 Gbps network bandwidth at its disposal. Consider

each of these clients associated with the checkpoint stream of a VM protected by HydraVM. The

measured storage throughput of FDS suggests that under this configuration, (1) each protected VM

can have about 300MB of checkpoint data sent and stored in one second; (2) VMs with a writable

working set smaller than 300MB may be checkpointed at least once every second. Using FDS

enables HydraVM to store checkpoints quickly and checkpoint VMs frequently, even when many

VMs are protected at the same time. Frequent checkpointing reduces the loss of completed work

upon failure. It also provides the possibility for HydraVM to support network buffering and trans-

parent recovery of client-facing applications, which are currently unsupported, as discussed in Sec-

tion 3.2.3; depending on running applications’ writable working set size, an even larger FDS cluster

or a stage buffer is needed.

To guarantee atomicity of checkpoint storage across multiple FDS disks, HydraVM may use a

few intermediate servers, deployed between the protected hosts and the FDS cluster. Each protected

VM runs its harcv in an intermediate server; one such server can run the harcv of multiple pro-

tected VMs. harcv receives a complete checkpoint from hacp in a memory buffer, and then writes

to the tracts of the checkpoint on the appropriate FDS disks. It ensures all writes are successful; if

any write fails, it retries the operation. The checkpoint buffer must not become unavailable before

the checkpoint is completely stored. This may be achieved by replicating the intermediate server, or

by using a backup battery in the server; when needed, the battery provides power of the server for

checkpoints to be flushed.

Alternatively, tracts can be stored by a logging approach similar to that in the Log-structured

File System (LFS) [86]; RAMCloud also uses a LFS-like approach to manage its DRAM and disk

storage. This approach writes to a tract by appending the new content of the tract to storage, rather

than overwriting the existing content of the tract. A partially stored checkpoint does not affect the

utility of the fail-over image, so storing each checkpoint atomically will not be a concern. However,

it is important to keep track of the tracts constituting the latest consistent fail-over image, which may

not always be the latest version of the tracts. Also, this approach needs to run a garbage collector

periodically to reclaim storage space from tracts that are no longer useful, i.e., those that have newer

contents and are not included in the fail-over image. Garbage-collecting tracts in their entirety can

42
DISTRIBUTION A: Distribution approved for public release.

greatly reduce the collection overhead; if all the data in a tract becomes garbage together, no extra

I/Os are needed to discover live data and preserve them before reclaiming space from the tract.

Otherwise, the extra I/Os caused by garbage collection can interfere with and slow down the storage

of new checkpoints.

The recovery mode of HydraVM also benefits from the use of a large, parallel shared storage.

When restoring a failed VM, hart can potentially load a large amount of data from the VM’s fail-

over image into the restoration host in a short amount of time. Thus, during slim restore, additional

VM state (e.g., part of the VM’s working set) can be loaded, to reduce the need of demand fetching

and improve the performance of the restored VM. As the VM executes, odpf may also pre-fetch

more memory pages in parallel. The VM’s memory space can be populated faster, thus reducing the

window during which the VM is susceptible to performance penalties. Note, however, that as the

scale and data parallelism of the shared storage increase, the speed of storage I/Os may become less

of a limiting factor in VM recovery, but the network bandwidth available to individual restoration

hosts may become a new bottleneck.

3.7 Related Work

Upon detection of a host failure, failed VMs may be restarted automatically [21], but the runtime

state of the VMs are lost upon restoration. To minimize such loss, two types of approaches have been

proposed to keep track of and recover from a recent VM state in a failure. One records the low-level

events, e.g., instructions and interrupts, executed by a protected (primary) VM, and replays them

in a backup VM deterministically in lock-step [20, 32]. If the primary fails, the backup takes over

execution from where the primary left off. Since the primary and backup must execute the exactly

same sequence of instructions, these approaches require the VMs to have identical configurations.

Therefore, they are not exempt from making unproductive memory reservation.

The other type of approaches replicates VM checkpoints continuously throughout normal VM

operations. Most existing systems replicate checkpoints at fixed time intervals, and buffer the VM

network outputs during each interval until the checkpoint of the interval is fully replicated to and ac-

knowledged by the backup [24, 39, 44, 47]. Alternatively, Kemari replicates a checkpoint each time

before the VM is about to interact with external devices (e.g., disk and network) [93]. To reduce the

application performance degradations caused by network buffering, RemusDB [69] buffers VM net-

work outputs selectively. Targeting database applications running in a VM, RemusDB buffers only

those network outputs that carry transaction control messages, e.g., acknowledgements to COMMIT

and ABORT requests. SecondSite [80] extends the use of checkpoint replication beyond a local area

network to synchronize primary and backup VMs connected by Internet links for disaster recovery.

All the above mentioned systems make memory reservation for backup VMs. HydraVM adapts

a periodic, incremental checkpointing technique similar to existing systems, but unlike these sys-

tems, trades off main memory with stable storage to provide a cost-effective HA alternative for

long-running computation jobs and cluster applications. There are other systems that persist VM

checkpoints in stable storage, but for different purposes than HydraVM. VNsnap [57] captures

consistent snapshots of a distributed VM environment, to suspend and later resume the entire VM

cluster. The system was evaluated with much longer intervals between snapshots (e.g., 10 minutes)

compared to HydraVM. Since VNsnap is not designed for HA, the system does not support fast

resumption from VM snapshots. Burtsev et al. implements transparent checkpoints in the Emulab

network testbed, to provide controls over experiment execution without interfering the realism of

experiments [35]. This system does not support fast resumption from VM checkpoints either, while

HydraVM quickly brings up a VM with slim restore.

43
DISTRIBUTION A: Distribution approved for public release.

The proposed slim VM restore technique is built upon the core idea of fast instantiation of a VM

with partially populated memory space. This idea has been applied to different types of problems.

Post-copy VM migration [50] resumes the execution of a migrated VM in the destination host

immediately after shipping the CPU state from the source VM, without having the entire memory

state copied over. As the VM runs in the destination host, memory pages are pulled/pushed from

the source VM. Potemkin [95] quickly “forks” new VMs in single hosts from a reference image and

creates private copies of VM pages upon modification of VM memory; its aim is to implement a

large honeyfarm system based on lightweight VMs. SnowFlock [62] extends the idea of VM fork

across machine boundaries. It creates multiple child VMs based on a condensed parent VM image

in a group of hosts. As the child VMs execute, memory pages are fetched from the parent on-

demand. The focus of SnowFlock is to spread application deployment rapidly, which is most useful

in the area of parallel computations. HydraVM applies a similar technique, however, to address a

completely different problem regarding the resource inefficiency of existing HA solutions.

3.8 Conclusions

In this chapter, we proposed HydraVM, a storage-based, memory-efficient way of achieving

high availability in a virtualized environment. Unlike conventional approaches, which require twice

the memory each protected VM uses, HydraVM requires minimal extra memory, relieving the ten-

sion between reliability and resource-efficiency, two critical operational goals of a virtualized envi-

ronment. HydraVM maintains the VM state needed by fail-over in a shared storage, and recovers a

failed VM promptly in any host that has access to the shared storage, allowing any host with avail-

able capacity to be used as the backup. HydraVM complements the HA toolbox currently available

to administrators of a virtualized environment with a cost-effective alternative suitable for protecting

long-running computation jobs and cluster applications.

44
DISTRIBUTION A: Distribution approved for public release.

CHAPTER IV

Application-Assisted Live Migration of Virtual Machines

with Java Applications

4.1 Introduction

Live migration [38, 73] is to move a running virtual machine (VM) from a physical host to

another with minimal disruption to the execution of the VM. It has been used for load-balancing [91,

98], fault-tolerance [71, 89], power savings [30, 40, 72], and performance enhancements [31].

To migrate VMs within a LAN, such as within a datacenter, the primary task is to migrate the

contents of VMs’ memory; VM disk contents can be stored in a shared storage. Most migration

tools transfer VM memory by using a pre-copy approach. While a migrating VM continues to run

on the source host, its memory pages are iteratively transferred to the destination host. All pages

are sent in the first iteration, and at each following iteration, only those pages dirtied during the

previous iteration are sent. Ideally, dirty pages should be transferred faster than new pages get

dirtied, and the number of dirty pages pending transmission should decrease iteratively. When the

VM is paused for the last iteration, a small number of dirty pages remain to be transferred. After this

short stop-and-copy, the VM resumes execution in the destination, and the migration completes.

However, this ideal migration is not always achievable, since the underlying network can be-

come a bottleneck. Figure 4.1 shows live migration of a 2GB database Xen VM over a gigabit

Ethernet. Since the database application dirties memory pages much faster than the pages can be

transferred, the number of dirty pages to be transferred does not decrease iteratively; hence the it-

erations do not keep becoming shorter. Migration cannot finish with a short stop-and-copy, but is

forced to enter the last iteration after generating excessive network traffic (a total of 7GB). It in-

curs a long completion time (66 secs), causes a noticeable VM downtime (8 secs), and degrades

application performance (by over 20%).

To alleviate the network bottlenecking problem during migration and its undesirable conse-

quences, approaches have been proposed to speed up memory transfer using high-speed networks [54],

slow down memory dirtying by throttling application execution [38], or reduce the amount of mem-

ory contents to be transferred, e.g., by using compression [92]. However, these approaches incur

high resource costs or application performance penalties. The OS’s knowledge can also be utilized

to reduce the amount of memory transfer by not sending clean page cache pages and free pages [60],

but the benefit is limited. Page cache misses may degrade application performance at the destina-

tion, and skipping free pages may only benefit the migration of lightly-loaded VMs.

In this chapter, we propose to reduce the amount of memory transfer by exploiting application

semantics. Specifically, we design application-assisted live migration, which skips transfer of VM

memory pages that need not be migrated for the execution of running applications at the destination.

45
DISTRIBUTION A: Distribution approved for public release.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25
 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

D
ur

at
io

n
(s

ec
)

R
at

e
(M

bi
t/s

ec
)

Migration iteration

duration
transfer rate
dirtying rate

Figure 4.1: Live migration of a 2GB Xen VM running the Apache Derby database workload from

SPECjvm2008.

We build a framework for the proposed approach based on Xen. Our framework places a paravirtu-

alized stub in the guest VM to enable collaboration between the migration tool and applications in

the guest. We ask the applications, which know best their semantics, to identify areas in their mem-

ory that need not be migrated. Based on the applications’ inputs, we maintain a transfer bitmap that

guides the migration tool to transfer or skip over VM memory pages.

Using the proposed framework, we build JAVMM, which migrates Java VMs—VMs running

various types of Java applications—without transferring garbage1 in Java memory. Targeting Java

applications does not restrict JAVMM’s applicability, since these applications are nearly ubiquitous;

with over 9 million developers worldwide, Java has become the global standard for web-based

content and enterprise software, and runs in 89% of computers in the U.S.[14]. Java applications

are increasingly being deployed and run in VMs for flexible resource sharing and easy deployment.

Various types of Java cloud services are being widely used [4], many of which are provisioned based

on VMs for elasticity. To migrate Java VMs fast and with little performance impact is therefore an

important task.

In JAVMM, Java Virtual Machine (JVM)2 assists in migration on behalf of Java applications.

Right before a migrating Java VM is paused for the last iteration, the running JVM performs a

garbage collection. After the last iteration is completed, the VM resumes execution at the destination

in a post-collection state: in the Young generation of the Java heap, only one survivor space may

contain live objects, which survived the collection. JAVMM migrates the surviving objects in the

last iteration, and skips transfer of the entire Young generation throughout migration.

We prototyped JAVMM using HotSpot JVM [7] in the proposed framework, and evaluated it

in terms of three metrics commonly considered for live migration: the time and resources used by

migration, and the impact of migration on running applications’ performance. Our experimental re-

sults show that compared to Xen live migration, which is agnostic of application semantics, JAVMM

can reduce the completion time, network traffic and application downtime caused by Java VM mi-

gration, all by more than 90%, when the running Java application has a high object allocation rate

and needs a large Young generation space, without incurring noticeable performance degradation to

the application.

The primary contributions of this chapter are as follows.

• We propose application-assisted live migration, and establish a generic framework to skip

migration of VM memory selectively based on application semantics.

• Using the proposed framework, we build JAVMM to migrate Java VMs skipping over garbage

1i.e., Java objects that are no longer used
2Note the difference between a JVM, the application-level VM that executes Java bytecode, and a Java VM, a general-

purpose VM in which Java applications and their JVMs run.

46
DISTRIBUTION A: Distribution approved for public release.

with JVM’s assistance, without customizing each Java application.

• Via an in-depth evaluation of JAVMM, we demonstrate the utility of application-assisted live

migration.

The remainder of this chapter is organized as follows. Section 4.2 reviews existing approaches to

alleviating network bottleneck during live migration. Section 4.3 presents our approach, a generic

framework for application-assisted live migration. Section 4.4 describes JAVMM, built based on

the proposed framework for efficient migration of Java VMs. Section 4.5 evaluates JAVMM exper-

imentally. We discuss the applications and possible extensions of this research in Section 4.6, and

conclude the chapter with Section 4.7.

4.2 Related Work

To alleviate network bottlenecking during live migration, approaches have been proposed to

send dirty memory pages faster, generate dirty memory pages slower, or send less data for the dirty

memory pages generated.

Huang et al. [54] proposed to transfer memory pages faster using high-speed networks capa-

ble of Remote Direct Memory Access (RDMA) like InfiniBand. The network remains a potential

bottleneck even with high-speed links, though, considering the increasing computation power of

individual VMs and the fact that multiple VMs may be migrated at the same time.

Clark et al. [38] proposed to slow down the memory-dirtying rate by moving processes to a wait

queue after they generate more than a certain number of dirty pages. This may degrade application

performance, and as the authors noted, one must be careful not to throttle interactive services.

Our approach falls in the third category, which transfers less data for the dirty memory pages

generated. Compression [55, 92] and deduplication [41, 42, 99] are popular in this category, trading

CPU for network bandwidth. Our approach skips transfer of selective memory pages, performing

no computations on the pages skipped and incurring a minimal CPU overhead.

There are also other approaches that skip transfer of selective memory pages, according to

different criteria than ours. Some skip over frequently dirtied pages during live iterations, but those

pages must be transferred in the last iteration [26, 53, 63, 65], risking a long VM downtime. Page

cache pages can be skipped over in all iterations if the storage has an identical copy of the pages; the

contents skipped need to be reproduced [56], or VM performance may degrade after migration [60].

Post-copy migration skips over all memory pages and removes the pre-copy stage. To run the VM

in the destination, pages are fetched from the source [50, 51], incurring performance penalties.

Free pages can be skipped over and not fetched upon access [60], by exploiting knowledge of the

migrating OS, but only in lightly-loaded VMs we may find a considerable number of free pages to

be skipped.

Our approach exploits knowledge of the migrating applications to skip transfer of selective

memory pages. JAVMM skips transfer of garbage in the frequently-dirtied Young generation of the

Java heap. It need not reproduce the contents skipped, and does not degrade application perfor-

mance. Our work is closest to the memory deprotection technique discussed in RemusDB [69], a

VM-based high-availability system for databases. To reduce system overhead, the authors explored

omission of selective memory contents from VM checkpoints based on application inputs, although

data structures to be suitably omitted by this technique are yet to be identified.

47
DISTRIBUTION A: Distribution approved for public release.

4.3 Application-Assisted Live Migration

We take a white-box approach to reducing the amount of memory transfer for efficient VM live

migration: we propose to skip transfer of selective VM memory based on application semantics, by

exploiting applications’ assistance.

4.3.1 What Memory to Skip Migrating?

Generally, memory contents that are reproducible or not required for correct application exe-

cution need not be transferred during migration; these contents also need no replication in high-

availability systems [69].

Examples of reproducible contents include those recoverable from application logs and inter-

mediate results that can be recomputed. It may be beneficial to skip migrating these contents if

regenerating them in the destination is faster than transferring them from the source.

Memory contents not required for correct application execution include caches and garbage.

Caches of various kinds, e.g., web cache and database buffer pool, need not be migrated if the

performance drop caused by empty caches at the destination can be mitigated or is acceptable.

Garbage is memory content that is no longer being used. It is a good candidate to skip, since in

its absence, applications execute correctly and without performance degradation. Garbage exists in

any applications written in languages that do not deallocate memory explicitly; Java, C# and most

scripting languages fall in this category.

4.3.2 Challenges and Design Principles

To skip migration of selective application memory, the key challenge is to let the migration tool

and running applications collaborate. The migration tool needs to know which memory pages to

skip transferring. For the memory contents not transferred, the applications need to recover or not

access them in the destination host.

Traditionally, the migration tool and an application in the guest VM are unaware of the execu-

tion of each other. They do not, and have no existing channel to, communicate. They also address

memory differently: the migration tool transfers VM memory pages based on Page Frame Numbers

(PFNs), i.e., the page numbers in the VM’s contiguous memory space, while the application exe-

cutes based on Virtual Addresses (VAs). For the migration tool and the application to collaborate,

the communication gap and semantic gap between them must be bridged.

We design a framework to enable their collaboration and be able to skip migration of selective

application memory, following three principles; each principle describes the responsibility of one

software component in our framework.

• The guest kernel provides system-level support for bridging the communication gap and se-

mantic gap between the migration tool and running applications. It coordinates between the

migration tool and the applications as they perform migration collaboratively, so that the mi-

gration tool need not interact with each application individually.

• A running application decides which areas of its memory need not be migrated, and informs

the migration tool of it. The application should make this decision, since it knows best the

semantics of its memory, e.g., what each memory area is used for and when the content is

needed.

• The migration tool needs to know which memory pages to skip transfer, without incorporating

application semantics. This way the tool becomes generic (i.e., application-independent), and

48
DISTRIBUTION A: Distribution approved for public release.

Domain 0 Guest VM

Xen

nlsk

App 1

nlskevtchn

skip-over

areas

App 2 App 3

LKM
VA-to-PFN

Transfer bitmap

writeread

nlsk

Comm.

proxy

evtchn

Migration

daemon

/proc

comm.

msgs

Figure 4.2: A generic framework for application-assisted live migration.

can thus be used for different applications without modification. This also minimizes changes

to existing live migration mechanisms.

4.3.3 A Generic Framework

Figure 4.2 provides an overview of our framework, prototyped based on Xen 4.1; our guest

VM runs Linux 3.1. We added a Xen management command to invoke application-assisted live

migration. Once invoked, our migration daemon executes. Our migration daemon is a modified

version of Xen’s. It communicates with applications in the guest through the guest kernel, and

skips transfer of memory pages guided by a transfer bitmap. We provide guest kernel support in a

Loadable Kernel Module (LKM).

4.3.3.1 Bridging the Communication Gap

Our LKM serves as a communication proxy between the migration daemon and the applications

in the guest. It interacts with the migration daemon using event channel, the event notification

primitive provided by Xen. A special event channel port is created when the guest VM is created,

through which the migration daemon can communicate with the LKM throughout the migration

process.

The LKM interacts with the applications using netlink sockets, a special socket family for com-

munication between kernel- and user-space processes. We use netlink because it is bi-directional,

asynchronous and capable of multicasting. Upon loading, the LKM creates a netlink socket, and as-

sociates it with a multicast group, which the applications subscribe to. The migration daemon com-

municates with the applications simply by contacting the LKM, and the LKM multicasts a netlink

message to notify all subscriber applications. The LKM also relays messages from the applications

to the migration daemon.

4.3.3.2 Bridging the Semantic Gap

The applications identify areas in their memory that the migration daemon can skip transfer.

They specify each skip-over area by a VA range, and pass the VA range to the LKM via a /proc

entry. The LKM finds the PFNs of the skip-over area by page table walks, while the application

49
DISTRIBUTION A: Distribution approved for public release.

LKM

Transfer bitmap

Application

Skip-over area

Last iter

begins

time

Migration

begins

0x4000 0x7fff

First update skip-over area?

0x3b00–0x8aff

0x3b00 0x8aff

shrink

0x4000 0x5fff

0x3b00 0x6aff

0x6b00–0x8aff left

expand

0x3b00 0x9aff

0x4000 0x5fff

Final update

0x4000 0x8fff

skip-over area?

0x3b00–0x9aff

0x3b00 0x9aff

Figure 4.3: An example of transfer bitmap updates.

continues its normal execution. The LKM may consider a smaller VA range than that specified by

the application. It aligns the start and end VAs of the specified range to the immediate next and

previous page boundaries, respectively, to ensure pages found in the skip-over area can be skipped

by the migration daemon in their entirety.

4.3.3.3 Skipping Transfer with a Transfer Bitmap

The LKM records the PFNs of the skip-over areas in a transfer bitmap. When transferring

VM memory, the migration daemon examines the transfer bitmap, in addition to the dirty bitmap

maintained by the hypervisor.

The transfer bitmap is created in the guest when the LKM is loaded, and is shared with the

migration daemon when migration begins. It uses one bit per VM memory page (PFN), based on

the same page size used by the dirty bitmap; assuming 4KB pages, the transfer bitmap uses 32KB

per GB of VM memory, incurring a negligible memory overhead. Each transfer bit is either set (1)

or cleared (0). A set transfer bit indicates the page needs to be migrated; the migration daemon

transfers the page if its marked dirty in the dirty bitmap. A cleared transfer bit indicates migration

of the page can be skipped; the migration daemon does not transfer the page, even if it is marked

dirty.

4.3.3.4 Updating the Transfer Bitmap

The transfer bitmap is initialized with all bits set; by default, memory pages are transferred if

they are marked dirty. Figure 4.3 illustrates how the transfer bitmap is updated. When migration

begins, the LKM makes the first bitmap update. It queries the applications for skip-over areas. For

each area in the applications’ response, it remembers the VA range, finds the associated PFNs, and

clears the corresponding transfer bits. Therefore, pages in the skip-over areas are not transferred

even if they are dirtied.

50
DISTRIBUTION A: Distribution approved for public release.

In parallel with, and after, the first bitmap update, the VM continues to run, and each skip-over

area may expand or shrink, i.e., VA ranges and the associated PFNs may join or leave the area.

Subsequent updates to the transfer bitmap may be needed.

A skip-over area is expected to shrink infrequently and by a small amount during migration, or

the benefit of skipping its migration decreases. When the area shrinks, the application should notify

the LKM of the VA ranges leaving the area. The LKM updates its memory of the area’s VA range

accordingly, and immediately, sets the transfer bits of the PFNs leaving the area. Since the pages

may later get dirtied in a memory area requiring migration, setting their transfer bits immediately

ensures transfer of their dirty contents in the iteration following the dirtying; this guarantees the

correctness of migration.

Given the VA ranges leaving a skip-over area, the LKM does not find the PFNs leaving the area

via page table walks, because the VA ranges may have been freed, in which case the associated

PFNs are reclaimed and no longer found in the page tables. The LKM maintains a cache of PFNs

with cleared transfer bits. It queries the cache by the VA ranges leaving the area to quickly find the

PFNs that must have their transfer bits set. The cache uses little memory: 1MB per GB of skip-over

area with 4-byte entries (a 0.1% overhead).

When a skip-over area expands, transfer bitmap updates are not required. Not clearing the

transfer bits of the PFNs joining the area does not affect the correctness of migration, although the

pages may be unnecessarily migrated. To reduce the runtime overhead, the application does not

notify when a skip-over area expands. The LKM does not clear the transfer bits of the PFNs joining

the area until in the final bitmap update, which is performed right before the last iteration begins.

Dirty pages in the expanded space of a skip-over area will be skipped in the last iteration to reduce

VM downtime.

In the final bitmap update, the LKM queries the applications again for skip-over areas. It com-

pares the VA ranges in the response of the applications with those in its memory. For any expanded

space, it finds the PFNs joining the areas via page table walks, and clears their transfer bits. For

any shrunk space, it sets the appropriate transfer bits based on the cached PFNs. Immediately after

the final bitmap update is completed, the VM is paused and the last iteration begins. In the short

window of the final bitmap update, the skip-over areas should be prevented from shrinking; this

ensures the transfer bits of all the pages leaving the areas are set.

In our current implementation, if a PFN joins or leaves a skip-over area with no changes in

the area’s VA range, the transfer bitmap is not updated. This happens when a virtual page in the

area has its PFN mapping changed in three possible ways: (1) from null to p, when a page frame

is allocated; (2) from pold to p, when the page is remapped due to page sharing, compaction and

migration (within the VM); and (3) from pold to null, when the page is swapped out. For (1),

migration finishes correctly without clearing the transfer bit of the allocated page, which joins the

skip-over area. For (2) and (3), we assume the absence of these events in skip-over areas during

migration, but the LKM can be extended to update the transfer bitmap for these events with further

assistance from the guest kernel.

4.3.3.5 Migration Workflow

Figure 4.4 shows the workflow of application-assisted live migration. Our LKM coordinates

between the migration daemon and applications in the guest as they collaborate through different

stages of migration. To ease its job of coordination, the LKM transitions between states of opera-

tion based on the messages exchanged with the migration daemon and the applications, and takes

different actions in each state as described next.

Before migration. Once the guest VM is created, the LKM may be loaded in preparation for

51
DISTRIBUTION A: Distribution approved for public release.

Running application

Create nlsk to interact with LKM

Report skip-over areas

Notify when a skip-over area shrinks

Make sure contents of skip-over areas

are recoverable or unneeded in dst.;

report skip-over areas again

Recover contents of skip-over areas

or consider the areas empty as app

execution continues

Migration daemon

Migration begin; notify LKM

Initialize for VM state transmission

(Use transfer & dirty bitmaps during transmission)

Transfer the 1st iter

Transfer more iters …

Entering the last iter; notify LKM

Pause the VM

Transfer the last iter

Resume VM in dst.; notify LKM

LKM

Initial setup

INITIALIZED:

MIGRATION STARTED:

First transfer bitmap update

More transfer bitmap updates

ENTERING LAST ITER:

Ask apps to be prepared

SUSPENSION READY:

Final transfer bitmap update

Ask migration to pause VM

RESUMED:

Notify apps

Go back to INITIALIZED

skip-over areas?

VA ranges

prep. for suspension!

skip-over areas?

ready for suspension!

VA ranges

VM resumed!

time

VA ranges left

Figure 4.4: The workflow of application-assisted live migration.

possible migration. Upon loading, the LKM sets up the communication proxy and the transfer

bitmap, and then enters the initialized state, ready for migration. If an application has memory

areas that need not be transferred during migration, it creates a netlink socket as it runs in the VM,

to communicate with the LKM and assist in migration.

Migration begins. The migration daemon connects with the LKM once it is started. The LKM en-

ters the migration started state, and multicasts a netlink message to query running applications

for skip-over areas. Based on the applications’ responses, it performs the first transfer bitmap up-

date. As the VM continues execution, the migration daemon transfers memory pages based on both

the transfer bitmap and the dirty bitmap. The LKM will be notified by the applications if a skip-over

area shrinks, and it updates the transfer bitmap immediately for the pages leaving the area.

Entering the last iteration. The migration daemon contacts the LKM again before pausing the

VM and entering the last iteration. The LKM multicasts a netlink message, asking the

applications to prepare for VM suspension. This message also queries the applications for the

current VA ranges of the skip-over areas, which are needed by the final transfer bitmap update.

To prepare for VM suspension, the applications ensure that when the VM resumes running in

the destination, the contents of their skip-over areas, which are not transferred to the destination,

are recoverable or unneeded. For example, they may need to execute to a known recoverable state,

flush caches or collect garbage. Once completing the actions required, they notify the LKM, passing

along the current VA ranges of the skip-over areas.

Knowing that the applications are suspension-ready, the LKM performs the final transfer

bitmap update, and then notifies the migration daemon to suspend the VM and proceed with the

last iteration. The contents of the skip-over areas should remain recoverable or unneeded until VM

suspension is completed.

Migration finishes and VM resumed. After the last iteration finishes, the migration daemon acti-

vates the VM at the destination, and notifies the LKM that VM execution has resumed. The LKM

asks the applications to execute recovery logic for their skip-over areas, or to consider those areas

empty, as they continue to run. It then returns to the initialized state in preparation for the next

migration.

52
DISTRIBUTION A: Distribution approved for public release.

Workload Description

derby Apache Derby [1] database with business logic

compiler OpenJDK 7 front-end compiler [13]

xml Apply style sheets to XML documents

sunflow An open-source image rendering system [17]

serial Serialize and deserialize primitives and objects

crypto Sign and verify with cryptographic hashes

scimark Compute the LU factorization of matrices

mpeg MP3 decoding

compress Compression by a modified Lempel-Ziv method

Table 4.1: Description of the SPECjvm2008 workloads used in our experiments.

4.4 JAVMM: Java-Aware VM Migration

Using our framework for application-assisted live migration, we have designed and imple-

mented JAVMM, which migrates Java VMs assisted by JVM.

In designing JAVMM, we considered skipping transfer of both the JVM code cache and garbage

in the Java heap. The code cache stores native code compiled for performance enhancements. If it is

not migrated, applications can resume running interpreted in the destination, but we have observed

a non-trivial performance drop in such a case. Since the code cache is small relative to the Java

heap, we decided to migrate it as usual, and focus on skipping the transfer of garbage in the Java

heap.

4.4.1 Background on Java Heap Management

As a Java program runs, objects are created in the heap of its JVM. Most implementations of

JVM (e.g., Oracle’s HotSpot and JRockit and IBM’s JVM) use a generational heap. The remainder

of this chapter is presented in the context of HotSpot, based on which JAVMM is prototyped. The

general principles and our design of JAVMM are also applicable to other JVM implementations.

In HotSpot, the heap is divided into Young and Old generations. The Young generation is further

divided into three spaces: Eden and two survivor spaces, From and To. Most objects are allocated in

the Eden. When the Eden gets filled up, JVM performs a minor garbage collection (GC) to reclaim

memory from garbage in the Young generation. Java (application) threads execute to a Safepoint [6]

and pause for a minor GC, so that GC threads can move objects in the heap in a consistent manner.

A minor GC copies live data in the Eden to the To space. Live data in the From space are either

copied to the To space, or promoted to the Old generation if they have survived a number of minor

GCs. At the end of a minor GC, the Eden is completely empty. The From and To spaces swap roles:

From becomes the one that holds live data, and To becomes empty.

4.4.2 Garbage in Java Heap

To understand Java heap usage, we experiment with the SPECjvm2008 suite [16], a benchmark

suite for measuring the performance of Java runtime environments. We run one workload from each

benchmark category for 10 minutes in a 2GB VM, using HotSpot and its parallel garbage collector;

Table 4.1 describes the workloads used. HotSpot is allowed to grow the Young generation to the

maximum size of 1GB and the Old generation to use the rest of the VM memory.

Figure 4.5(a) shows the average memory consumption of the Java heap. For 8 of the 9 workloads

53
DISTRIBUTION A: Distribution approved for public release.

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400

de
rb

y

co
m

pi
le

r

xm
l

su
nf

lo
w

se
ria

l

cr
yp

to

sc
im

ar
k

m
pe

g

co
m

pr
es

s

S
iz

e
(M

B
)

Old gen
Young gen

(a) Java heap memory usage

 0

 200

 400

 600

 800

 1,000

 1,200

de
rb

y

co
m

pi
le

r

xm
l

su
nf

lo
w

se
ria

l

cr
yp

to

sc
im

ar
k

m
pe

g

co
m

pr
es

s

S
iz

e
(M

B
)

Live data
Garbage

(b) Garbage in a minor GC

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600

de
rb

y

co
m

pi
le

r

xm
l

su
nf

lo
w

se
ria

l

cr
yp

to

sc
im

ar
k

m
pe

g

co
m

pr
es

s

D
ur

at
io

n
(m

s)

(c) Duration of a minor GC

Figure 4.5: Java heap usage and GC behavior of sample workloads from SPECjvm2008 running in

a 2GB VM; see Table 4.1 for workload descriptions. The Young generation of the Java

heap is allowed to use at most 1GB memory.

evaluated, the Young generation grows faster and uses more memory than the Old generation; up to

98% of the heap memory is consumed by the Young generation. Only scimark uses more memory in

the Old generation, since that workload has more long-lived than short-lived objects. We observed

that for derby, compiler, xml and sunflow, the Young generation quickly grows to the maximum

size of 1GB to accommodate the large number of objects created by the workloads; these workloads

have high object allocation rates.

A large portion of the Young generation memory may contain garbage when the lifetime of the

objects is short. For all workloads except scimark, over 97% of the Young generation memory is

garbage collected in a minor GC, as shown in Figure 4.5(b). The amount of garbage is significant

for the four workloads using a 1GB Young generation. We observed that these workloads fill the

Young generation and trigger a minor GC frequently, every 3 seconds or so; each minor GC reclaims

almost all of the Young generation memory. Throughout workload execution, this pattern repeats,

and the entire Young generation is continuously dirtied.

Figure 4.5(c) shows the average time required to collect Young generation garbage by a minor

GC. Our results suggest that it may be faster to collect the garbage than to transfer them over a

bottleneck network link. This applies to all workloads except scimark, which has exceptionally

small amounts of garbage. Even for compiler, which has the longest GC duration of the workloads,

its 950MB of garbage takes 1.5 seconds to be collected, but would take more than 7 seconds to

be transferred over the gigabit Ethernet link in our testbed. Note, however, that for Old generation

garbage, collection may not be faster than transmission. In our experiments, a full GC can take as

long as 4 seconds to collect only 93MB of garbage in the Old generation.

In summary, for a wide range of Java workloads we have made the following observations.

Observation 1. The Young generation can be large and continuously dirtied, due to the high object

allocation rate of the workload.

Observation 2. A significant portion of the Young generation memory may contain garbage, due to

the workload’s use of short-lived objects.

Observation 3. Collecting Young generation garbage may be faster than sending them over a

bottleneck network link.

4.4.3 JAVMM

The Young generation can generate a large number of dirty pages during the migration of a Java

VM, yet many of the dirty pages may contain garbage (Observations 1 and 2). JAVMM thus skips

transfer of the garbage with assistance of JVM, which knows where garbage objects are located in

54
DISTRIBUTION A: Distribution approved for public release.

Java application

nlsk

LKM VA-to-PFN nlsk

evtchn

get Young gen VA range

enforce a minor GC

TI agent

HotSpot JVM

Garbage collector

(ParallelOldGC)

Young gen shrink

enforced GC finishedcallback

callback

Migration

daemon

Figure 4.6: An overview of JAVMM, which is built on our framework for application-assisted live

migration. This is a zoom-in view of Figure 4.2 with JVM/Java application being the

running application.

memory.

Garbage objects are scattered among live data, and their locations keep changing as objects

become unreferenced. It is impractical to keep track of the locations of garbage objects in order

to skip their migration. Instead, JAVMM enforces a minor GC to collect garbage for efficient

migration, since collection may be faster than network transmission (Observation 3).

Built on the framework described in Section 4.3.3, JAVMM enforces a minor GC only once

during migration, when running applications are notified by the LKM to prepare for VM suspension.

After the enforced GC completes, the VM is suspended. In the Young generation, the Eden and

To spaces are empty, and only the From space may contain live data, i.e., the data surviving the

enforced GC. These live data are the only Young generation data that will be used when the VM

resumes running in the destination.

JAVMM makes sure to transfer these live data in the last iteration, and throughout migration,

it skips transfer of the memory pages in the Young generation, even if they are dirtied. JAVMM is

thus beneficial for migrating Java VMs with a large and frequently-dirtied Young generation; this

typically happens when the running Java applications are characterized by high object allocation

rates.

4.4.3.1 System Overview

In JAVMM, JVM provides all the assistance needed for VM migration on behalf of Java appli-

cations; no modifications to Java applications are required. Figure 4.6 shows how JAVMM is built

based on our framework for application-assisted live migration; our prototype uses HotSpot JVM

(OpenJDK 7) and its parallel garbage collector.

We enable JVM to communicate with our LKM and collaborate with the migration daemon

through the LKM. In prototyping JAVMM, we wanted to provide most of the functionalities re-

quired of JVM as pluggable modules, and minimize modifications to the core HotSpot code. We

thus implemented an agent using JVM Tool Interface (TI) [10], a native programming interface for

inspecting and controlling JVM. The TI agent compiles to a dynamic library to be loaded as Java

applications run; it runs in the same OS process as the JVM/Java applications. JVM interacts with

the LKM through the TI agent. When the functionality required is beyond the current scope of TI,

we extend TI with the necessary modifications to HotSpot.

55
DISTRIBUTION A: Distribution approved for public release.

TI agent

Create nlsk

LKM

INITIALIZED:

MIGRATION STARTED:

First transfer bitmap update

More transfer bitmap updates

ENTERING LAST ITER:

Ask apps to be prepared

SUSPENSION READY:

Final transfer bitmap update

Ask migration to pause VM

RESUMED:

Notify apps

Go back to INITIALIZED

skip-over areas?

HotSpot

Young gen VA range?

Young gen shrunk

do a minor GC!

Young gen VA range?ready for suspension!

VA range

GC is done!

VM resumed! resume Java threads!

skip-over areas?

prep for suspension!

VA range left

VA range

Figure 4.7: The workflow of JAVMM, with details of JVM’s and our TI agent’s actions to fulfill the

requirements of an application assisting in migration shown in Figure 4.4.

4.4.3.2 Workflow of JAVMM

Figure 4.7 shows the workflow of JAVMM; it details how JVM accomplishes the actions re-

quired of an application assisting in migration, sketched in the gray boxes of Figure 4.4.

As a Java application runs, our TI agent is loaded. It creates a netlink socket to communicate

with the LKM.

The agent is notified by the LKM when migration begins, and is queried for skip-over areas. It

obtains the VA range of the Young generation from JVM, and tells the LKM. Based on the agent’s

response, the LKM performs the first transfer bitmap update. It clears the transfer bits of the Young

generation pages, so the pages will not be transferred even if they are dirtied.

During migration, the agent notifies the LKM when memory pages leave the Young generation,

so that the transfer bitmap can be updated. In HotSpot, memory pages may be freed from the Young

generation at the end of a GC. We slightly modify HotSpot to notify when this happens, based on

TI’s notification interface of GC events. A callback in our agent is invoked to pass to the LKM the

VA range with memory pages freed, and the LKM immediately sets the transfer bits of the pages

leaving the Young generation.

The agent is notified by the LKM again when migration is about to enter the last iteration, and is

asked to prepare for VM suspension. It enforces a minor GC to collect Young generation garbage;

we modify HotSpot to ensure that this GC is not silently ignored.3

As usual, Java threads execute to a Safepoint and pause, and JVM performs a collection. Once

the collection is finished, a callback in our agent is executed; at this time, the Eden and To spaces are

empty, and the Java threads are still paused. Without giving JVM control to release the Java threads

from the Safepoint and resume their execution, the agent notifies the LKM that the application is

ready for VM suspension. The Java threads are thus prevented from using the heap, and this ensures

the Eden and To spaces remain empty until VM suspension is completed.

Along with the notification of the application being suspension-ready, the agent passes to the

LKM the current VA range of the Young generation and also that of the occupied From space, which

3HotSpot may ignore GC requests when several requests are enqueued at about the same time due to simultaneous

allocation failures in multiple threads—only one of these requests needs to be executed.

56
DISTRIBUTION A: Distribution approved for public release.

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60T
ra

ns
fe

r
ra

te
 (

M
b/

s)

Elapsed time (sec)

(a) Xen

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60T
ra

ns
fe

r
ra

te
 (

M
b/

s)

Elapsed time (sec)

(b) JAVMM

Figure 4.8: Progress of migrating a VM running the compiler workload from SPECjvm2008. Each

box represents a migration iteration; the width shows the duration and the area shows

the amount of traffic sent. In (b), the second last iteration of JAVMM generates little

network traffic while waiting for the workload to execute to a Safepoint (0.7 sec) and a

minor GC to be done (0.1 sec).

contains the live data surviving the enforced GC. Based on these information, the LKM performs the

final transfer bitmap update. It considers the occupied From pages “leaving” the Young generation,

and sets their transfer bits, in order to ensure transfer of live Young generation data in the last

iteration.

Once the final transfer bitmap update is completed, the migration daemon suspends the VM,

and finishes migration with the last iteration. When the VM resumes in the destination, our agent

is notified by the LKM. It returns control to JVM, which in turn releases the Java threads from the

Safepoint. The Java application then resumes execution with all live data available in the destination.

4.5 Evaluation

We now evaluate JAVMM in comparison with Xen VM live migration, which is a traditional

pre-copy approach that is agnostic of the applications running in the migrating VM.

4.5.1 Experimental Setup

Our evaluation uses both real-life applications and benchmarks from SPECjvm2008 [16], the

same benchmark suite used to profile Java heap usage in Section 4.4.2.

We run each workload for 10 minutes in a VM configured with 2GB memory and 4 vCPUs.

Halfway through the workload execution, we migrate the VM, between two HP Proliant BL465c

blades in the same gigabit Ethernet LAN; each blade is equipped with two dual-core AMD Opteron

2.2 GHz CPUs and 12GB RAM.

Alongside each workload, we run a custom analyzer that sends out the number of operations

completed by the workload once every second. We observe workload throughput from outside of

the VM using a time source that is not affected by temporary suspension of the VM, which happens

before completing migration.

Each experiment is repeated at least three times. Unless otherwise mentioned, we report the

average of the measurements, and show 90% confidence intervals in bar graphs.

4.5.2 Progress of Migration

We begin by analyzing how a Java VM is migrated iteratively by Xen and JAVMM, respectively.

We use a VM running the compiler workload from SPECjvm2008 as an example; see Table 4.1 for

the workload description. Figure 4.8 plots the progress of migrating the VM in an experimental run.

57
DISTRIBUTION A: Distribution approved for public release.

 0.0

 0.5

 1.0

 1.5

 2.0

M
em

or
y

(G
B

)

Migration iteration
1 10 20 30

skipped (already dirtied)
transferred

(a) Xen

 0.0

 0.5

 1.0

 1.5

 2.0

M
em

or
y

(G
B

)

Migration iteration
1 11

skipped (young gen)
skipped (already dirtied)
transferred

(b) JAVMM

Figure 4.9: Amount of memory processed when migrating a VM running the compiler workload

from SPECjvm2008. In (b), the 4–10th iterations of JAVMM each process less than

2MB of dirty memory.

We plot each iteration by a box, and show the duration and the amount of traffic sent by the width

and area of the box, respectively.

In the first iteration, Xen and JAVMM perform equally well. They both skip sending about

500MB of memory, as shown in Figure 4.9. Xen skips over pages that are dirtied before transmis-

sion, since such pages may be sent in the next iteration. Prototyped on Xen, JAVMM also skips over

pages that are already dirtied, and in addition, all Young generation pages. The workload is using a

512MB Young generation when migrated, and most of the space is skipped over by both Xen and

JAVMM in the first iteration.

Xen and JAVMM start to progress differently from the second iteration. Although they both

have more than 500MB of dirty memory pending transmission in the second iteration, they transfer

different amounts. JAVMM sends only 64MB of the dirty memory, skipping over both repeatedly

dirtied pages and Young generation pages. Xen has to send more than 200MB of the dirty memory,

since it can only skip over repeatedly dirtied pages.

Since JAVMM sends less dirty data, it finishes the second iteration faster, during which less

memory gets dirtied. As a result, it has even less dirty data to send in the third iteration. JAVMM

reduces the amount of memory transfer effectively as iterations progress. After 10 iterations, little

dirty memory remains to be sent. JAVMM then finishes migration with a short stop-and-copy at the

11th iteration, using 17 seconds and sending 1.6GB of network traffic.

However, for Xen, the amount of memory transfer does not decrease over the iterations. Migra-

tion is forced to enter stop-and-copy when it reaches the maximum 30 iterations allowed by Xen’s

default; the stop-and-copy takes long, since over 400MB of dirty memory remains to be sent. Xen

finishes migration taking 58 seconds and sending 6.1GB of network traffic, i.e., over 3x longer time

and more traffic than JAVMM.

4.5.3 Performance of Migration

Next, we evaluate JAVMM for workloads with different characteristics of Java heap usage.

Workload characterization. When profiling sample workloads from SPECjvm2008 in Section 4.4.2,

we found the workloads fall in the following three categories according to Java heap usage; see Ta-

ble 4.1 for description of the workloads.

• Category 1. The Young generation quickly grows to the maximum size, since the workload

has a high object allocation rate. The derby, compiler, xml and sunflow workloads are in this

category.

58
DISTRIBUTION A: Distribution approved for public release.

Workload
Max allowed Observed when migrated

Young gen (MB) Young gen (MB) Old gen (MB)

derby 1024 1024 259

crypto 1024 456 18

scimark 1024 128 486

Table 4.2: Workloads with different characteristics of Java heap usage and their experimental set-

tings.

 0

 10

 20

 30

 40

 50

 60

 70

derby crypto scimark

T
im

e
(s

ec
)

Xen
JAVMM

(a) Total migration time

 0
 1
 2
 3
 4
 5
 6
 7
 8

derby crypto scimark

T
ra

ffi
c

(G
B

)

Xen
JAVMM

(b) Total migration traffic

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

derby crypto scimark

D
ow

nt
im

e
(s

ec
)

Xen
JAVMM

(c) Workload downtime

Figure 4.10: Performance of JAVMM and Xen live migration for workloads with different charac-

teristics of Java heap usage.

• Category 2. The Young generation grows faster than the Old generation, albeit not maximally

utilized. The workload has a medium object allocation rate. The serial, crypto, mpeg and

compress workloads are in this category.

• Category 3. The workload has a small Young generation and a large Old generation, since

the object allocation rate is low, and most of the workload data are long-lived. Scimark is the

only workload in this category.

Our observations on object allocation rates are consistent with the measurements by other re-

searchers [90].

We evaluate JAVMM using one workload from each category. For Category 1, which is the

most favorable workload scenario for JAVMM, we evaluate derby; in the workloads of this category,

derby uses the largest Old generation, which JAVMM has to transfer. For category 2, we evaluate

crypto. For category 3, which is the least favorable workload scenario for JAVMM, we evaluate

scimark.

Derby, crypto and scimark are all CPU-intensive workloads. They use up 90% of CPU, and

perform no network I/Os. Table 4.2 shows their experimental settings. While each workload can

use a maximum 1GB Young generation, when migrated, the Young generations of derby, crypto and

scimark are using 1GB, 0.4GB and 0.1GB of memory, respectively.

How fast does JAVMM migrate a Java VM? Figure 4.10(a) shows the time required to migrate

the VMs running the three workloads. JAVMM migrates the derby VM fastest, taking only 12

seconds. Compared to Xen, which takes over a minute to migrate the VM, JAVMM reduces the

migration time by 82%. JAVMM also achieves a 69% reduction of migration time for the crypto

VM. For scimark, JAVMM can skip over little Young generation memory. It migrates the VM using

a comparable amount of time as Xen.

How much resource does JAVMM use for migration? Figure 4.10(b) shows the amount of net-

work traffic transferred to migrate the VMs. For derby and crypto, JAVMM migrates the VM

sending even less traffic than the VM size, while Xen sends up to 3.5x the VM size of migration

59
DISTRIBUTION A: Distribution approved for public release.

 0

 0.2

 0.4

 0.6

 0.8

 1

 280 300 320 340 360 380 400

O
pe

ra
tio

ns
/s

ec

Workload runtime (sec)

Xen
JAVMM

(a) Derby

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 280 300 320 340 360 380 400

O
pe

ra
tio

ns
/s

ec

Workload runtime (sec)

Xen
JAVMM

(b) Crypto

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 280 300 320 340 360 380 400

O
pe

ra
tio

ns
/s

ec

Workload runtime (sec)

Xen
JAVMM

(c) Scimark

Figure 4.11: Effect of VM migration on the throughput of running application, i.e., the number of

operations completed per second. Migration begins after the application runs for 300

seconds.

traffic. Compared to Xen, JAVMM reduces migration traffic for derby and crypto by 84% and 72%,

respectively. For scimark, JAVMM achieves a 10% reduction of migration traffic.

Thanks to the reduced data transfer, JAVMM also uses up to 84% less CPU time than Xen in

migrating the VMs. In these experiments, JAVMM uses at most 1MB of memory for the transfer

bitmap and PFN cache.

How much does JAVMM affect application performance? Figure 4.11 shows the throughputs

of the workloads. For each workload, the VM is migrated after the workload runs for 300 seconds.

Using JAVMM, the workload experiences no noticeable throughput degradation during migration,

except the short pause before migration finishes. When migrated by Xen, the workload can experi-

ence an extended downtime.

Figure 4.10(c) shows the workload downtime. The downtime includes the time spent in the last

iteration and the resumption time. The resumption time is required to reconnect VM devices and

activate VM execution in the destination; this time is short, only about 170 ms in our measurements.

For JAVMM, the downtime also includes the time required to finish the enforced GC while the

workloads are paused at a Safepoint, as well as the time required by the final transfer bitmap update;

the latter is completed quickly, within 300 µs in all our experiments.

Derby experiences 1.2 seconds of downtime when the VM is migrated by JAVMM, 83% shorter

than the 9-second downtime when the VM is migrated by Xen. Derby dirties the 1GB Young

generation rapidly, but JAVMM can still reduce the amount of memory transfer iteratively, by skip-

ping transfer of Young generation pages. In the last iteration, JAVMM sends only 11MB of dirty

data, skipping over Young generation garbage, while Xen has over 900MB of dirty data to be sent.

JAVMM thus reduces the downtime of derby significantly compared to Xen, even though it uses

0.9 second to finish the enforced GC; the GC duration can be further shortened with Java heap fine-

tuning or increased parallelism. For crypto, JAVMM also achieves a 73% shorter downtime than

Xen.

However, for scimark, JAVMM imposes a 10% longer downtime than Xen; scimark is paused

for 1.2 and 1.3 seconds when the VM is migrated by Xen and JAVMM, respectively. For this

workload, JAVMM takes time to perform the enforced GC, but the amount of data to be transferred

in the last iteration is not reduced. Most of scimark’s objects are long-lived. They survive the GC

enforced, and must be sent in the last iteration.

Summary. JAVMM is advantageous in migrating the VMs running derby and crypto, representa-

tives of workloads with non-trivial Young generation sizes and object allocation rates. Compared

to Xen, JAVMM migrates these VMs achieving shorter completion time, smaller network traffic

and shorter downtime. Scimark represents workloads using a small Young generation and many

60
DISTRIBUTION A: Distribution approved for public release.

Workload
Max allowed Observed when migrated

Young gen (MB) Young gen (MB) Old gen (MB)

xml 1536 1536 28

derby 1024 1024 259

compiler 512 512 86

Table 4.3: Workloads with high object allocation rates and their experimental settings.

 0
 10
 20
 30
 40
 50
 60
 70
 80

xml derby compiler

T
im

e
(s

ec
)

Xen
JAVMM

(a) Total migration time

 0
 1
 2
 3
 4
 5
 6
 7
 8

xml derby compiler
T

ra
ffi

c
(G

B
)

Xen
JAVMM

(b) Total migration traffic

 0

 2

 4

 6

 8

 10

 12

 14

xml derby compiler

D
ow

nt
im

e
(s

ec
)

Xen
JAVMM

(c) Workload downtime

Figure 4.12: Performance of JAVMM and Xen live migration for Category 1 workloads with differ-

ent size Young generations.

long-lived objects. Compared to Xen, JAVMM migrates this VM with a slightly longer downtime,

although it achieves comparable, or slightly better migration time and traffic.

4.5.4 Impact of Young Generation Size

We conducted a second set of experiments for the workloads most favorable for JAVMM, Cat-

egory 1 workloads with high object allocation rates. We evaluate the benefit of using JAVMM for

these workloads with varying sizes of Young generation, focusing on the same three evaluation

questions discussed in Section 4.5.3.

We experimented with derby and two additional workloads, xml and compiler, from Category 1.

All three workloads are CPU-intensive and without network I/Os. We specify different maximum

sizes for the Young generations of the workloads, as shown in Table 4.3. When migration begins,

the Young generations of xml, derby and compiler all reach the maximum sizes. They are using

1.5GB, 1GB and 0.5GB of memory, namely, 75%, 50% and 25% of the VM memory, respectively.

Figure 4.12(a) shows the time required to migrate the VMs running the three workloads. With

high object allocation rates, the workloads dirty the entire Young generation space rapidly. For Xen,

the larger the Young generation, the more dirty memory are repeatedly transferred, and the longer it

takes to migrate the VM. On the contrary, JAVMM migrates the VMs with larger Young generations

faster, since more dirty memory are skipped over. JAVMM thus achieves greater reductions of

migration time for the VMs with larger Young generations, than Xen. For the xml, derby and

compiler workloads, JAVMM migrates the VM using 91%, 82% and 69% less time than Xen,

respectively.

A similar trend is observed for the amount of network traffic sent for migrating the VMs, as

shown in Figure 4.12(b). For JAVMM, the larger the Young generation, the less migration traffic is

sent, and it achieves a greater traffic reduction than Xen. JAVMM sends 93% less traffic than Xen

to migrate the VM running xml, which has the largest Young generation of the workloads.

Figure 4.12(c) shows the downtime incurred by the workloads before migration is completed.

When the VM is migrated by Xen, the workloads with larger Young generations incur longer down-

61
DISTRIBUTION A: Distribution approved for public release.

times. A large portion of the Young generation keeps getting dirtied until the VM is paused for the

last iteration, due to the workloads’ high object allocation rates. Xen has up to 1.5GB of data to

send in the last iteration, resulting in up to 13 seconds of downtime.

For JAVMM, there is not a direct relationship between downtime and the Young generation size,

since downtime also affected by other factors, i.e., the duration of the enforced GC and the amount

of surviving data to be sent in the last iteration. The three workloads experience about 1.2 seconds of

downtime when the VM is migrated by JAVMM, up to 91% shorter than their respective downtimes

incurred when migrated by Xen.

4.6 Discussions on Applications and Extensions

When to use JAVMM? JAVMM is most beneficial for the cases which are most problematic to

traditional pre-copy approaches—when the VM to be migrated runs Java applications with large

Young generations and high object allocation rates.

In some cases, JAVMM should be used with consideration of the resulting application downtime.

The first is when the application requires long minor GCs, since the duration of the enforced GC

increases downtime. The second is when the application has a high object survival rate. Many

objects may survive the enforced GC and must be transferred during stop-and-copy. Scimark is

such an example. The third is when the application is read-intensive for which traditional pre-copy

approaches can reduce downtime effectively; the GC enforced by JAVMM is likely to increase

downtime.

Use JAVMM for large VMs with fast networks. Our evaluation has shown benefits of JAVMM

by migrating a 2GB VM over a gigabit Ethernet. These benefits remain as VMs configured with

tens or hundreds of GBs of memory are migrated over 10 Gbps or faster networks, since in such

scenarios, the VM processing power, application memory footprints and memory-dirtying rates

likely increase proportionally. As we continue to deploy JAVMM in upgraded environments, the

underlying network may remain as much a bottleneck as in our current testbed.

Use JAVMM with other garbage collectors. While the design of JAVMM is orthogonal to the

choice of garbage collector, we are particularly interested in porting JAVMM to run with collec-

tors that use a non-contiguous VA range for the Young generation for performance evaluation and

optimization. HotSpot’s garbage-first garbage collector [43] is one such example.

Support large and multiple applications. The LKM updates the transfer bitmap on applications’

behalf. It can coordinate concurrent bitmap updates from multiple applications, and prevent the ap-

plications from manipulating others’ memory. While the LKM can notify a set of applications with

multicast, care is needed to collect responses from all of them and handle any straggler. We are also

investigating parallelization of transfer bitmap updates to handle large skip-over areas efficiently.

4.7 Conclusions

In this chapter, we have proposed application-assisted live migration, skipping transfer of selec-

tive VM memory pages based on application semantics. We have built a generic framework for the

proposed approach, which is then used to build JAVMM, a system that migrates VMs running Java

applications skipping transfer of garbage in Java memory. Our experimental results have shown

that JAVMM can migrate a Java VM with up to more than 90% less completion time, less network

traffic and shorter application downtime than Xen live VM migration, which is agnostic of applica-

tion semantics. JAVMM also incurs a lower CPU cost than Xen live VM migration and a negligible

memory overhead. In JAVMM, JVM is enabled to provide all the assistance needed for migration

62
DISTRIBUTION A: Distribution approved for public release.

on behalf of Java applications; no modifications to Java applications are required by JAVMM for

efficient migration of a VM.

63
DISTRIBUTION A: Distribution approved for public release.

CHAPTER V

Conclusions

In this thesis, we have explored ways to replicate VMs for HA using resources efficiently, and

to migrate VMs fast, with minimal execution disruption and using resources efficiently. We now

summarize the contributions of this thesis and the directions in which the research of this thesis can

be extended.

5.1 Thesis Contributions

To reduce the network traffic of checkpoint replication in a HA system, we have shown that

checkpoint compression can be applied adapting to the workload types and resource constraints

in the system, by evaluating and comparing different compression methods’ strengths and weak-

nesses. To the best of our knowledge, we present the first detailed evaluation and characterization

of checkpoint compression methods in the context of supporting HA, considering gzip, delta and

similarity compressions. Based on the evaluation results, we provide guidelines for their selections

and usages.

To reduce the memory requirement of maintaining backup VMs for HA, we have shown that a

memory-efficient HA alternative is feasible, by building HydraVM, a storage-based HA approach

for VMs. HydraVM uses a new combination of well-known system techniques, including incre-

mental VM checkpointing, demand paging and pre-fetching, to solve the real-world problem of

providing resource-efficient HA support for VMs. Our prototype implementation and evaluation of

HydraVM demonstrate the applicability of this solution.

Finally, we have shown the utility of running applications’ assistance in VM live migration. We

have established a generic framework for application-assisted live migration, which skips transfer

of selective VM memory based on application semantics. Using this framework, we have built

JAVMM, which migrates Java VMs skipping transfer of garbage in Java memory by leveraging

JVM’s assistance. Our evaluation of JAVMM in comparison with Xen live migration, which is

agnostic of applications running in migrating VMs, has validated the effectiveness of our approach.

5.2 Future Directions

The research in this thesis can be extended in the following directions:

• Hybrid and automatically selected checkpoint compression methods in HA systems.

Our characterization of compression methods shows that it is useful to combine the strengths

of different compression methods in a hybrid approach. Cully et al. [39] briefly discussed

64
DISTRIBUTION A: Distribution approved for public release.

using gzip and delta compression together to achieve greater reductions of checkpoint traffic,

but our evaluation suggests that combining them could potentially incur high CPU and mem-

ory costs at the same time. We propose to combine a lightweight technique, like similarity

compression, with heavyweight ones, such as gzip. Coarse-grained similarity compression

(e.g., based on 1K chunks) can be used to achieve a meaningful, though not significant, re-

duction of checkpoint sizes, at a low computing overhead. The remaining checkpoint data can

be compressed greater and faster with gzip. If for some workloads, similarity compression

reduces checkpoint traffic effectively already, gzip need not be performed.

We further propose to develop heuristics that utilize the insights from our evaluation to au-

tomate the selection of compression methods according to workload types and resource con-

straints, and even to dynamically adjust the selection decisions at runtime. Such heuristics are

especially useful for building an intelligent HA system to provide VM protection at a large

scale using resources efficiently.

• Transparent failure recovery of client-facing applications by a storage-based HA ap-

proach.

It is challenging for a storage-based HA approach like HydraVM to checkpoint a protected

VM frequently like approaches using in-memory backups do and support network buffering,

which in turn enables transparent failure recovery for client-facing applications running in the

VM, since each checkpoint takes much longer to store on permanent storage devices than in

memory. Large, parallel storage systems help overcome the intrinsic slowness of permanent

storage devices, as discussed in Section 3.6, but it can be difficult to solely rely on the storage

system’s scale and data parallelism to achieve the kind of checkpointing frequencies required

by network buffering to not incur undue delays on network packets, especially when running

applications have large writable working sets. It would be useful to use a small amount of

memory in a stage buffer, to hold and coalesce part of the VM state (e.g., the most frequently

checkpointed pages) before writing them to storage. This limited use of memory speeds up

checkpoint storage during VM protection, and can also help in fast VM recovery.

• Exploiting greater intelligence of running applications in VM live migration.

In application-assisted live migration, we have presented a framework for the migration tool to

be informed by running applications and know, for each memory page of the migrating VM,

whether to send or skip the page. We plan to extend this framework so that the migration

tool can receive more guidance from running applications and exploit the greater intelligence

therein. The tool can then perform a richer set of operations to reduce the amount of memory

transfer for efficient live migration. For example, the tool can apply compression on the

memory pages that are not being skipped over. This not only reduces memory transfer further,

but also uses compression, a CPU-expensive operation, at a lower cost. The transfer bitmap

in our framework can be augmented to consist of more than one bit for each VM memory

page, and indicate the suitable compression methods to apply before sending the page over

the network.

65
DISTRIBUTION A: Distribution approved for public release.

BIBLIOGRAPHY

66
DISTRIBUTION A: Distribution approved for public release.

BIBLIOGRAPHY

[1] Apache Derby database in Java. http://db.apache.org/derby.

[2] Basic Compression Library. http://bcl.comli.eu.

[3] The FFmpeg multimedia tool. http://www.ffmpeg.org.

[4] Four Java cloud platforms reviewed. http://www.javaworld.com/article/2078443/

mobile-java/four-java-cloud-platforms-reviewed.html.

[5] GNU zip utility. http://www.gzip.org.

[6] HotSpot glossary of terms. http://openjdk.java.net/groups/hotspot/docs/

HotSpotGlossary.html.

[7] HotSpot virtual machine. http://openjdk.java.net/groups/hotspot/.

[8] The HPC Challenge benchmark. http://icl.cs.utk.edu/hpcc.

[9] Hyper-V server virtualization technical overview. http://download.microsoft.com/

download/A/2/7/A27F60C3-5113-494A-9215-D02A8ABCFD6B/Windows_Server_

2012_R2_Server_Virtualization_White_Paper.pdf.

[10] JVM Tool Interface (TI). http://docs.oracle.com/javase/6/docs/platform/

jvmti/jvmti.html.

[11] Live migration on KVM. http://www.linux-kvm.org/page/Migration.

[12] LVM2 resource page. http://sourceware.org/lvm2.

[13] OpenJDK 7. http://openjdk.java.net/projects/jdk7/.

[14] Popularity of Java applications. http://www.java.com/en/about/.

[15] The RUBiS benchmark. http://rubis.ow2.org.

[16] The SPECjvm2008 benchmark suite. http://www.spec.org/jvm2008.

[17] Sunflow open source rendering system. http://sunflow.sourceforge.net.

[18] A TPC-C-like benchmark of VoltDB. http://community.voltdb.com/node/134.

[19] VMware distributed resource scheduler (DRS). http://www.vmware.com/files/pdf/

VMware-Distributed-Resource-Scheduler-DRS-DS-EN.pdf.

[20] VMware Fault-Tolerance (FT). http://www.vmware.com/products/

fault-tolerance.

67
DISTRIBUTION A: Distribution approved for public release.

[21] VMware High-Availability (HA). http://www.vmware.com/products/vi/vc/ha.html.

[22] VoltDB in-memory database. http://community.voltdb.com.

[23] zlib compression library. http://zlib.net.

[24] Anurag Agarwal, Dharmesh Shah, Nagaraj Kalmala, Neelakandan Panchaksharam, Rajeev

Bharadhwaj, Sameer Lokray, Srikanth Sm, and Thomas Bean. Method and apparatus for

transactional fault tolerance in a client-server system, Oct. 2009. Patent, US 7610510.

[25] Samer Al-Kiswany, Dinesh Subhraveti, Prasenjit Sarkar, and Matei Ripeanu. VMFlock:

Virtual machine co-migration for the cloud. In Proceedings of the 20th Symposium on High

Performance Distributed Computing, 2011.

[26] Javanshir Farzin Alamdari and Kamran Zamanifar. A reuse distance based precopy approach

to improve live migration of virtual machines. In Proceedings of the 2nd IEEE International

Conference on Parallel, Distributed and Grid Computing, pages 551–556, 2012.

[27] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan Seshan, and Scott Shenker. Packet

caches on routers: The implications of universal redundant traffic elimination. In Proceedings

of the ACM SIGCOMM 2008 Conference on Data Communication, pages 219–230, 2008.

[28] Ashok Anand, Vyas Sekar, and Aditya Akella. SmartRE: An architecture for coordinated

network-wide redundancy elimination. In Proceedings of the ACM SIGCOMM 2009 Confer-

ence on Data Communication, pages 87–98, 2009.

[29] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter As a Computer: An

Introduction to the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers,

2nd edition, 2013.

[30] Nilton Bila, Eyal de Lara, Kaustubh Joshi, H. Andrés Lagar-Cavilla, Matti Hiltunen, and

Mahadev Satyanarayanan. Jettison: Efficient idle desktop consolidation with partial VM

migration. In Proceedings of the 7th ACM European Conference on Computer Systems,

pages 211–224, 2012.

[31] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic placement of virtual machines

for managing SLA violations. In Proceedings of the 10th IFIP/IEEE International Sympo-

sium on Integrated Network Management, pages 119–128, 2007.

[32] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance. ACM Trans-

actions on Computer Systems, 14(1):80–107, Feb. 1996.

[33] Alan D. Brunelle. blktrace user guide. http://www.cse.unsw.edu.au/~aaronc/

iosched/doc/blktrace.html.

[34] Anton Burtsev, Mike Hibler, and Jay Lepreau. Aggressive server consolidation through page-

able virtual machines. In Proceedings of the 8th Symposium on Operating Systems Design

and Implementation (Poster Session), 2008.

[35] Anton Burtsev, Prashanth Radhakrishnan, Mike Hibler, and Jay Lepreau. Transparent check-

points of closed distributed systems in Emulab. In Proceedings of the 4th ACM European

Conference on Computer Systems, pages 173–186, 2009.

68
DISTRIBUTION A: Distribution approved for public release.

[36] B. Callaghan, B. Pavlowski, and P. Staubach. NFS version 3 protocol specification. Technical

report, IETF, 1995. RFC 1813.

[37] Peter M. Chen and Brian D. Noble. When virtual is better than real. In Proceedings of the

8th Workshop on Hot Topics in Operating Systems, pages 133–138, 2001.

[38] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Cristian

Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machine. In Proceedings

of the 3rd USENIX Symposium on Networked Systems Design and Implementation, 2005.

[39] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, and An-

drew Warfield. Remus: High availability via asynchronous virtual machine replication. In

Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementa-

tion, pages 161–174, 2008.

[40] Tathagata Das, Pradeep Padala, Venkata N. Padmanabhan, Ramachandran Ramjee, and

Kang G. Shin. LiteGreen: Saving energy in networked desktops using virtualization. In

Proceedings of the USENIX Annual Technical Conference, 2010.

[41] Umesh Deshpande, Brandon Schlinker, Eitan Adler, and Kartik Gopalan. Gang migration

of virtual machines using cluster-wide deduplication. In Proceedings of the 13th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, pages 394–401, 2013.

[42] Umesh Deshpande, Xiaoshuang Wang, and Kartik Gopalan. Live gang migration of virtual

machines. In Proceedings of the 20th International Symposium on High Performance and

Distributed Computing, pages 135–146, 2011.

[43] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-first garbage col-

lection. In Proceedings of the 4th International Symposium on Memory Management, pages

37–48, 2004.

[44] Yuyang Du and Hongliang Yu. Paratus: Instantaneous failover via virtual machine replica-

tion. In Proceedings of the 8th International Conference on Grid and Cooperative Comput-

ing, pages 307–312, 2009.

[45] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Peter M. Chen. Ex-

ecution replay of multiprocessor virtual machines. In Proceedings of the 4th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, pages 121–

130, 2008.

[46] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey

of rollback-recovery protocols in message-passing systems. ACM Computer Survey, 34(3),

Sep. 2002.

[47] Balazs Gerofi and Yutaka Ishikawa. RDMA based replication of multiprocessor virtual ma-

chines over high-performance interconnects. In Proceedings of the IEEE International Con-

ference on Cluster Computing, pages 35–44, 2011.

[48] Balazs Gerofi, Zoltan Vass, and Yutaka Ishikawa. Utilizing memory content similarity for

improving the performance of replicated virtual machines. In Proceedings of the 4th Confer-

ence on Utility and Cloud Computing, 2011.

69
DISTRIBUTION A: Distribution approved for public release.

[49] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren, George

Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference Engine: Harnessing memory

redundancy in virtual machines. In Proceedings of the 8th Symposium on Operating Systems

Design and Implementation, pages 309–322, 2008.

[50] Michael Hines and Kartik Gopalan. Post-copy based live virtual machine migration using

adaptive pre-paging and dynamic self-ballooning. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, pages 51–60,

2009.

[51] Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi. Enabling instan-

taneous relocation of virtual machines with a lightweight VMM extension. In Proceedings of

the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pages

73–83, 2010.

[52] Kai-Yuan Hou, Mustafa Uysal, Arif Merchant, Kang G. Shin, and Sharad Singhal. HydraVM:

Low-cost, transparent high availability for virtual machines. Technical report, HP Labs, 2011.

[53] Bolin Hu, Zhou Lei, Yu Lei, Dong Xu, and Jiandun Li. A time-series based precopy ap-

proach for live migration of virtual machines. In Proceedings of the 17th IEEE International

Conference on Parallel and Distributed Systems, pages 947–952, 2011.

[54] Wei Huang, Qi Gao, Jiuxing Liu, and Dhabaleswar K. Panda. High performance virtual

machine migration with RDMA over modern interconnects. In Proceedings of the 2007

IEEE International Conference on Cluster Computing, pages 11–20, 2007.

[55] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. Live virtual machine migration

with adaptive memory compression. In Proceedings of the IEEE International Conference

on Cluster Computing, pages 1–10, 2009.

[56] Changyeon Jo, Erik Gustafsson, Jeongseok Son, and Bernhard Egger. Efficient live migration

of virtual machines using shared storage. In Proceedings of the 9th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, pages 41–50, 2013.

[57] Ardalan Kangarlou, Patrick Eugster, and Dongyan Xu. VNsnap: Taking snapshots of virtual

networked infrastructures in the cloud. IEEE Transactions on Services Computing, 5(4),

2012.

[58] Jacob Kloster, Jesper Kristensen, and Arne Mejlholm. On the feasibility of memory sharing:

Content-based page sharing in the Xen virtual machine monitor. Master’s thesis, Department

of Computer Science, Aalborg University, 2006.

[59] Ricardo Koller and Raju Rangaswami. I/O Deduplication: Utilizing content similarity to

improve I/O performance. In Proceedings of the 8th Conference on File and Storage Tech-

nologies, 2010.

[60] Akane Koto, Hiroshi Yamada, Kei Ohmura, and Kenji Kono. Towards unobtrusive VM live

migration for cloud computing platforms. In Proceedings of the Asia-Pacific Workshop on

Systems, 2012.

[61] Michael Kozuch and M. Satyanarayanan. Internet suspend/resume. In Proceedings of the

Workshop on Mobile Computing Systems and Applications, pages 40–46, 2002.

70
DISTRIBUTION A: Distribution approved for public release.

[62] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell, Philip

Patchin, Stephen M. Rumble, Eyal de Lara, Michael Brudno, and Mahadev Satyanarayanan.

SnowFlock: Rapid virtual machine cloning for cloud computing. In Proceedings of the 4th

ACM European Conference on Computer Systems, pages 1–12, 2009.

[63] Zhaobin Liu, Wenyu Qu, Tao Yan, Haitao Li, and Keqiu Li. Hierarchical copy algorithm

for Xen live migration. In Proceedings of International Conference on Cyber-Enabled Dis-

tributed Computing and Knowledge Discovery, pages 361–364, 2010.

[64] Maohua Lu and Tzi-Cker Chiueh. Fast memory state synchronization for virtualization-based

fault tolerance. In Proceedings of the 39th Conference on Dependable Systems and Networks,

pages 534–543, 2009.

[65] Fei Ma, Feng Liu, and Zhen Liu. Live virtual machine migration based on improved pre-copy

approach. In IEEE International Conference on Software Engineering and Service Sciences,

pages 230–233, 2010.

[66] Richard McDougall and Jennifer Anderson. Virtualization performance: Perspectives and

challenges ahead. SIGOPS Operating System Review, 44(4), Dec. 2010.

[67] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre, Michael J. Feeley,

Norman C. Hutchinson, and Andrew Warfield. Parallax: Virtual disks for virtual machines.

In Proceedings of the 3rd ACM European Conference on Computer Systems, 2008.

[68] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom. SFS:

Random write considered harmful in solid state drives. In Proceedings of the 10th USENIX

conference on File and Storage Technologies, 2012.

[69] Umar Farooq Minhas, Shriram Rajagopalan Brendan Cully, Ashraf Aboulnaga, Kenneth

Salem, and Andrew Warfield. RemusDB: Transparent high availability for database systems.

PVLDB, 4(11), 2011.

[70] Derek G. Murray, Steven H, and Michael A. Fetterman. Satori: Enlightened page sharing. In

Proceedings of the USENIX Annual Technical Conference, 2009.

[71] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Proactive

fault tolerance for HPC with Xen virtualization. In Proceedings of the 21st Annual Interna-

tional Conference on Supercomputing, pages 23–32, 2007.

[72] Ripal Nathuji and Karsten Schwan. VirtualPower: Coordinated power management in vir-

tualized enterprise systems. In Proceedings of 21st ACM SIGOPS Symposium on Operating

Systems Principles, pages 265–278, 2007.

[73] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration for virtual

machines. In Proceedings of the USENIX Annual Technical Conference, 2005.

[74] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann, Jon Howell, and Yu-

taka Suzue. Flat datacenter storage. In Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation, pages 1–15, 2012.

[75] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel Rosen-

blum. Fast crash recovery in RAMCloud. In Proceedings of the 23rd ACM SIGOPS Sympo-

sium on Operating Systems Principles, pages 29–41, 2011.

71
DISTRIBUTION A: Distribution approved for public release.

[76] Zachary Peterson and Randal Burns. Ext3cow: A time-shifting file system for regulatory

compliance. ACM Transactions on Storage, 1(2), May 2005.

[77] Dick Pountain. Run-length encoding. Byte, 12(6), 1987.

[78] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. In Proceedings

of the 1st Conference on File and Storage Technologies, 2002.

[79] M. Rabin. Fingerprinting by random polynomials. Technical report, Harvard University,

1981. TR-15-81.

[80] Shriram Rajagopalan, Brendan Cully, Ryan O’Connor, and Andrew Warfield. SecondSite:

Disaster tolerance as a service. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Interna-

tional Conference on Virtual Execution Environments, 2012.

[81] Sean Rhea, Russ Cox, and Alex Pesterev. Fast, inexpensive content-addressed storage in

Foundation. In Proceedings of the USENIX Annual Technical Conference, pages 143–156,

2008.

[82] Pierre Riteau, Christine Morin, and Thierry Priol. Shrinker: Improving live migration of

virtual clusters over WANs with distributed data deduplication and content-based addressing.

In Proceedings of the European Conference on Parallel Processing, 2011.

[83] Alan Robertson. Linux-HA heartbeat system design. In Proceedings of the 4th Annual Linux

Showcase & Conference - Volume 4, Oct. 2000.

[84] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree filesystem. ACM

Transactions on Storage, 9(3), Aug. 2013.

[85] Ohad Rodeh and Avi Teperman. zFS - a scalable distributed file system using object disks.

In Proceedings of the 20 th IEEE/11 th NASA Goddard Conference on Mass Storage Systems

and Technologies, 2003.

[86] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-

structured file system. ACM Transactions on Computer System, 10(1):26–52, Feb. 1992.

[87] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S. Lam, and

Mendel Rosenblum. Optimizing the migration of virtual computers. In Proceedings of the

5th Symposium on Operating Systems Design and Implementation, pages 377–390, 2002.

[88] Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam. The design of a practical system

for fault-tolerant virtual machines. SIGOPS Operating System Review, 44(4), Dec. 2010.

[89] D. P. Scarpazza, P. Mullaney, O. Villa, F. Petrini, V. Tipparaju, D. M. L. Brown, and

J. Nieplocha. Transparent system-level migration of PGAS applications using Xen on In-

finiBand. In Proceedings of the 2007 IEEE International Conference on Cluster Computing,

pages 74–83, 2007.

[90] Kumar Shiv, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko. SPECjvm2008 per-

formance characterization. In Proceedings of the 2009 SPEC Benchmark Workshop on Com-

puter Performance Evaluation and Benchmarking, 2009.

72
DISTRIBUTION A: Distribution approved for public release.

[91] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. Server-storage virtualiza-

tion: Integration and load balancing in data centers. In Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, pages 1–12, 2008.

[92] Petter Svärd, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. Evaluation of delta com-

pression techniques for efficient live migration of large virtual machines. In Proceedings of

the 7th Conference on Virtual Execution Environments, pages 111–120, 2011.

[93] Yoshiaki Tamura, Koji Sato, Seiji Kihara, and Satoshi Moriai. Kemari: Virtual machine syn-

chronization for fault tolerance. In USENIX Annual Technical Conference (Poster Session),

2008.

[94] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud computing

hardware reliability. In Proceedings of the 1st ACM Symposium on Cloud Computing, pages

193–204, 2010.

[95] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Snoeren, Ge-

offrey M. Voelker, and Stefan Savage. Scalability, fidelity, and containment in the potemkin

virtual honeyfarm. In Proceedings of the 20th ACM Symposium on Operating Systems Prin-

ciples, pages 148–162, 2005.

[96] Carl A. Waldspurger. Memory resource management in VMware ESX server. In Proceedings

of the 5th Symposium on Operating Systems Design and Implementation, pages 181–194,

2002.

[97] Timothy Wood, K. K. Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe. Cloud-

Net: Dynamic pooling of cloud resources by live WAN migration of virtual machines. In

Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-

tion Environments, pages 121–132, 2011.

[98] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Black-box and

gray-box strategies for virtual machine migration. In Proceedings of the 4th USENIX Con-

ference on Networked Systems Design and Implementation, pages 229–242, 2007.

[99] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng. Exploiting data deduplication to accel-

erate live virtual machine migration. In Proceedings of the IEEE International Conference

on Cluster Computing, pages 88–96, 2010.

[100] Xiaoyun Zhu, Don Young, Brian J. Watson, Zhikui Wang, Jerry Rolia, Sharad Singhal, Bret

McKee, Chris Hyser, Daniel Gmach, Rob Gardner, Tom Christian, and Lucy Cherkasova.

1000 Islands: Integrated capacity and workload management for the next generation data

center. In Proceedings of the 2008 International Conference on Autonomic Computing, 2008.

73
DISTRIBUTION A: Distribution approved for public release.

Response ID:5140 Data

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

kgshin@umich.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

734-763-0391

Organization / Institution name

The University of Michigan

Grant/Contract Title
The full title of the funded effort.

Protection of mission-critical applications from untrusted execution environments

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-10-1-0393

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

Kang G. Shin

Program Manager
The AFOSR Program Manager currently assigned to the award

Tristan Nguyen

Reporting Period Start Date

07/15/2010

Reporting Period End Date

07/14/2015

Abstract

Continuous replication and live migration of Virtual Machines (VMs) are two vital tools in a virtualized
environment, but they are resource-expensive. Continuously replicating a VM's checkpointed state to a
backup host maintains high-availability (HA) of the VM despite host failures, but checkpoint replication can
generate significant network traffic. This report describes how to replicate VMs for HA using resources
efficiently, and to migrate VMs fast, with minimal execution disruption and using resources efficiently.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF

The maximum file size for an SF298 is 50MB.

F025917 SF-298.pdf

DISTRIBUTION A: Distribution approved for public release.

http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/183-52f1651a69f1daa42ecb5e0774af817d_F025917+SF-298.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
maximum file size for the Report Document is 50MB.

afosr_final_report2015.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

1. Kang G. Shin, Xiaoen Ju, Zhigang Chen, and Xin Hu,
``Privacy protection for users of location-based services,''
IEEE Wireless Communications, vol. 19, no. 1, pp. 30-39, February 2012.

2. Xiaoen Ju and Kang G. Shin,
``Location privacy protection for smartphone users using quadtree entropy maps,'' Journal of Information
Privacy and Security, vol. 11, no. 2, pp. 62-79, July 2015.

3. Karen Hou, Kang G. Shin, and Jan-Lung Sung,
``Application-Assisted Live Migration of Virtual Machines with Java Applications,'' ACM EuroSys 2015,
Bordeaux, France, April 21-24, 2015.

4. Kassem Fawaz and Kang G. Shin,
``Location privacy protection for smartphone users,''
21st ACM Conference on Computer and Communications Security
(ACM CCS 2014), pp. 239-250, Scottsdale, Arizona, November 3-7, 2014.

5. Xin Hu and Kang G. Shin,
``DUET: Integration of dynamic and static analyses for malware clustering
with cluster ensembles,'' 2013 Annual Computer Security Applications Conference} (ACSAC), New
Orleans, LA, December 9-13, 2013.

6. Zhigang Chen, Xin Hu, Xiaoen Ju, and Kang G. Shin,
``LISA: Location Information ScrAmbler for privacy protection on
smartphones,'' 2013 IEEE Conference on Communications and Network Security (IEEE CNS 2013),
Washington, D.C., Oct. 14-16, 2013.

7. Xiaoen Ju, Livio Soares, Kang G. Shin, and Kyung Dong Ryu,
``On Fault Resilience of OpenStack,'' 2013 ACM Symposium on Cloud Computing, Santa Clara, CA,
October 1-3, 2013.

8. Xiaoen Ju, Livio~Soares, Kang G. Shin, and Kyung D. Ryu,
``Towards a fault-resilient cloud management stack,''
5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud'13),
San Jose, CA, June 25–26, 2013.

9. Xin Hu, Sandeep Bhatkar, Kent Griffin, and Kang G. Shin,
``MutantX-S: Scalable malware clustering based on static features,''
2013 USENIX Annual Technical Conference}, San Jose, June 26-28, 2013.

10. Karen Hou, Kang G. Shin, Yoshio Turner, and Sharad Singhal,
``Tradeoffs in compressing virtual machine checkpoints,''
2013 ACM Workshop Virtualization Technologies in Distributed
Computing} (VTDC'13), New York City, June 17-18, 2013.

11. Xiaoen Ju, Kang G. Shin, Livio Soares, Kyung D. Ryu, and Dilma Da Silva, ``Diagnosis-friendly cloud
management stack,'' a poster at 10-th USENIX Symp. on Operating Systems Design and Implementation},DISTRIBUTION A: Distribution approved for public release.

http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/211-45e712f15ee46b6601b48cd4222bc727_afosr_final_report2015.pdf

Hollywood, CA, Oct. 2012.

Changes in research objectives (if any):

Change in AFOSR Program Manager, if any:

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary

Equipment/Facilities

Supplies

Total

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Sep 23, 2015 13:08:07 Success: Email Sent to: kgshin@umich.edu

DISTRIBUTION A: Distribution approved for public release.

	DTIC_Title_Page_-_PROTECTION_OF_MISSION-CRITICAL_APPLICATIONS_FROM_UNTRUSTED_EXECUTION_ENVIRONMENT[1]
	FA9550-10-1-0393 SF298
	FA9550-10-1-0393 FINAL REPORT
	FA9550-10-1-0393 SURV

